
io uring
Status Update within Samba

Stefan Metzmacher <metze@samba.org>

Samba Team / SerNet

2023-09-20

https://samba.org/~metze/presentations/2023/SDC/

Check for Updates

▶ Check for an updated version of this presentation here:
▶ https://samba.org/˜metze/presentations/2023/SDC/

Stefan Metzmacher io uring (2/22)

https://samba.org/~metze/presentations/2023/SDC/
https://samba.org/~metze/presentations/2023/SDC/


Topics

▶ What is io-uring?

▶ io-uring for Samba

▶ Performance research, prototyping and ideas

▶ The road to upstream

▶ Future Improvements

▶ Questions? Feedback!

Stefan Metzmacher io uring (3/22)

Last Status Updates (SDC 2020/2021 - SambaXP 2023)

▶ I gave a similar talk at the storage developer conference 2020:
▶ See https://samba.org/˜metze/presentations/2020/SDC/
▶ It explains the milestones and design up to Samba 4.13 (in detail)

▶ I gave a similar talk at the storage developer conference 2021:
▶ See https://samba.org/˜metze/presentations/2021/SDC/
▶ It explains the milestones and updates up to Samba 4.15 (in detail)

▶ I gave a similar talk at the SambaXP conference 2023:
▶ See https://samba.org/˜metze/presentations/2023/SambaXP/
▶ It explains the milestones and updates up to Samba 4.19 (in detail)

Stefan Metzmacher io uring (4/22)

https://samba.org/~metze/presentations/2020/SDC/
https://samba.org/~metze/presentations/2021/SDC/
https://samba.org/~metze/presentations/2023/SambaXP/


What is io-uring? (Part 1)

▶ Linux 5.1 introduced a new scalable AIO infrastructure
▶ It’s designed to avoid syscalls as much as possible
▶ kernel and userspace share mmap’ed rings:

▶ submission queue (SQ) ring buffer
▶ completion queue (CQ) ring buffer

▶ See ”Ringing in a new asynchronous I/O API” on LWN.NET

▶ This can be nicely integrated with our async tevent model
▶ It may delegate work to kernel threads
▶ It seems to perform better compared to our userspace threadpool
▶ It can also inline non-blocking operations

Stefan Metzmacher io uring (5/22)

io-uring for Samba (Part 1)

▶ Between userspace and filesystem (available from 5.1):
▶ IORING OP READV, IORING OP WRITEV and IORING OP FSYNC
▶ Supports buffered and direct io
▶ IORING OP FSETXATTR, IORING OP FGETXATTR (from 5.19)
▶ IORING OP GETDENTS, under discussion, but seems to be tricky
▶ IORING OP FADVISE (from 5.6)

▶ Path based syscalls with async impersonation (from 5.6)
▶ IORING OP OPENAT2, IORING OP STATX
▶ Using IORING REGISTER PERSONALITY for impersonation
▶ IORING OP UNLINKAT, IORING OP RENAMEAT (from 5.10)
▶ IORING OP MKDIRAT, IORING OP SYMLINKAT,

IORING OP LINKAT (from 5.15)
▶ IORING OP SETXATTR, IORING OP GETXATTR (from 5.19)

Stefan Metzmacher io uring (6/22)

https://lwn.net/Articles/776703/


io-uring for Samba (Part 2)

▶ Between userspace and socket (and also filesystem) (from 5.8)
▶ IORING OP SENDMSG, IORING OP RECVMSG
▶ Improved MSG WAITALL support (5.12, backported to 5.11, 5.10)
▶ Maybe using IOSQE ASYNC in order to avoid inline memcpy
▶ IORING OP SPLICE, IORING OP TEE
▶ IORING OP SENDMSG ZC, zero copy with an extra completion (from

6.1)
▶ IORING OP GET BUF, under discussion to replace

IORING OP SPLICE

Stefan Metzmacher io uring (7/22)

vfs io uring in Samba 4.12 (2020)

▶ With Samba 4.12 we added ”io uring” vfs module
▶ For now it only implements

SMB VFS PREAD,PWRITE,FSYNC SEND/RECV
▶ It has less overhead than our pthreadpool default implementations
▶ I was able to speed up a smbclient ’get largefile /dev/null’

▶ Using against smbd on loopback
▶ The speed changes from 2.2GBytes/s to 2.7GBytes/s

▶ The improvement only happens by avoiding context switches
▶ But the data copying still happens:

▶ From/to a userspace buffer to/from the filesystem/page cache

▶ The data path between userspace and socket is completely unchanged
▶ For both cases the cpu is mostly busy with memcpy

Stefan Metzmacher io uring (8/22)



Performance research (SMB2 Read)

▶ In October 2020 I was able to do some performance research
▶ With 100GBit/s interfaces and two NUMA nodes per server.

▶ At that time I focussed on the SMB2 Read performance only
▶ We had limited time on the given hardware
▶ We mainly tested with fio.exe on a Windows client
▶ Linux kernel 5.8.12 on the server

▶ More verbose details can be found here:
▶ https://lists.samba.org/archive/samba-technical/2020-October/135856.html

Stefan Metzmacher io uring (9/22)

Performance with MultiChannel, sendmsg()
4 connections, ˜3.8 GBytes/s, bound by >500% cpu in total, sendmsg() takes up to 0.5 msecs

Stefan Metzmacher io uring (10/22)

https://lists.samba.org/archive/samba-technical/2020-October/135856.html


IORING OP SENDMSG (Part1)
4 connections, ˜6.8 GBytes/s, smbd only uses ˜11% cpu, (io wqe work ˜50% cpu) per connection, we still use >300% cpu in total

Stefan Metzmacher io uring (11/22)

IORING OP SENDMSG (Part2)
The major problem still exists, memory copy done by copy user enhanced fast string()

Stefan Metzmacher io uring (12/22)



IORING OP SENDMSG + IORING OP SPLICE (Part1)
16 connections, ˜8.9 GBytes/s, smbd ˜5% cpu, (io wqe work 3%-12% cpu filesystem->pipe->socket), only ˜100% cpu in total.

The Windows client was still the bottleneck with ”Set-SmbClientConfiguration -ConnectionCountPerRssNetworkInterface 16”

Stefan Metzmacher io uring (13/22)

smbclient IORING OP SENDMSG/SPLICE (network)
4 connections, ˜11 GBytes/s, smbd 8.6% cpu, with 4 io wqe work threads (pipe to socket) at ˜20% cpu each.

smbclient is the bottleneck here too

Stefan Metzmacher io uring (14/22)



smbclient IORING OP SENDMSG/SPLICE (loopback)
8 connections, ˜22 GBytes/s, smbd 22% cpu, with 4 io wqe work threads (pipe to socket) at ˜22% cpu each.

smbclient is the bottleneck here too, it triggers the memory copy done by copy user enhanced fast string()

Stefan Metzmacher io uring (15/22)

More loopback testing on brand new hardware
▶ Recently I re-did the loopback read tests

IORING OP SENDMSG/SPLICE (from /dev/shm/)
▶ 1 connection, ˜10-13 GBytes/s, smbd 7% cpu,

with 4 iou-wrk threads at 7%-50% cpu.
▶ 4 connections, 24-30 GBytes/s, smbd 18% cpu,

with 16 iou-wrk threads at 3%-35% cpu.

▶ I also implemented SMB2 writes with
IORING OP RECVMSG/SPLICE (tested to /dev/null)
▶ 1 connection, ˜7-8 GBytes/s, smbd 5% cpu,

with 3 io-wrk threads at 1%-20% cpu.
▶ 4 connections, ˜10 GBytes/s, smbd 15% cpu,

with 12 io-wrk threads at 1%-20% cpu.

▶ I tested with a Linux Kernel 5.13
▶ In both cases the bottleneck is clearly on the smbclient side
▶ We could apply similar changes to smbclient and add true multichannel

support
▶ It seems that the filesystem->pipe->socket path is much better

optimized

Stefan Metzmacher io uring (16/22)



The road to upstream (TEVENT FD ERROR)

▶ We need support for TEVENT FD ERROR in order to monitor errors
▶ When using IORING OP SEND,RECVMSG we still want to notice

errors
▶ This is the main merge request:
▶ https://gitlab.com/samba-team/samba/-/merge requests/2793
▶ This merge request converts Samba to use TEVENT FD ERROR:
▶ https://gitlab.com/samba-team/samba/-/merge requests/2885
▶ (It also simplifies other places in the code without io uring)

Stefan Metzmacher io uring (17/22)

The road to upstream (samba io uring abstraction 1)

API glue to tevent:

void samba_io_uring_ev_register(void);

const struct samba_io_uring_features *samba_io_uring_system_features(void);

struct samba_io_uring *samba_io_uring_ev_context_get_ring(struct tevent_context *ev);

const struct samba_io_uring_features *samba_io_uring_get_features(

const struct samba_io_uring *ring);

ev = tevent_context_init_byname(mem_ctx , "samba_io_uring_ev ");

▶ samba io uring abstraction factored out of vfs io uring:
▶ samba io uring ev hybrid tevent backend (glued on epoll backend)
▶ It means every layer getting the tevent context can use io uring
▶ No #ifdef’s just checking if the required features are available

Stefan Metzmacher io uring (18/22)

https://gitlab.com/samba-team/samba/-/merge_requests/2793
https://gitlab.com/samba-team/samba/-/merge_requests/2885


The road to upstream (samba io uring abstraction 2)

generic submission/completion api:

void samba_io_uring_completion_prepare(struct samba_io_uring_completion *completion ,

void (* completion_fn)(struct samba_io_uring_completion *completion ,

void *completion_private ,

const struct io_uring_cqe *cqe),

void *completion_private);

void samba_io_uring_submission_prepare(struct samba_io_uring_submission *submission ,

void (* submission_fn)(struct samba_io_uring *ring ,

struct samba_io_uring_submission *submission ,

void *submission_private),

void *submission_private ,

struct samba_io_uring_completion *completion);

struct io_uring_sqe *samba_io_uring_submission_sqe(struct samba_io_uring_submission *

submission);

size_t samba_io_uring_queue_submissions(struct samba_io_uring *ring ,

struct samba_io_uring_submission *submission);

▶ Using it ...
▶ convert vfs io uring
▶ use it in smb2 server.c
▶ In future use it in other performance critical places too.

Stefan Metzmacher io uring (19/22)

The road to upstream (smb2 server.c)

▶ Refactoring of smb2 server.c
▶ add optional IORING OP SENDMSG, IORING OP RECVMSG support

▶ There are structural problems with splice from a file
▶ I had a discussion with the Linux developers about it:
▶ The page content from the page cache may change unexpectetly
▶ https://lists.samba.org/archive/samba-technical/2023-February/thread.html#137945

▶ We may not able to use IORING OP SENDMSG/SPLICE by default
▶ Maybe IORING OP RECVMSG/SPLICE is possible

▶ At least we can have only 1 one copy instead of two:
▶ IORING OP SENDMSG ZC is able to avoid copying to the socket

▶ we get an extra completion once the buffers are not needed anymore

▶ This gives good results, between with and without
IORING OP SENDMSG/SPLICE

▶ But I don’t have numbers as it doesn’t work on loopback
▶ Within VM’s improvement can be seen

Stefan Metzmacher io uring (20/22)

https://lists.samba.org/archive/samba-technical/2023-February/thread.html#137945


Future Improvements

▶ I have a prototype for a native io uring tevent backend:
▶ The idea is to avoid epoll and only block in io uring enter()
▶ But the semantics of IORING OP POLL ADD,REMOVE are not

useable
▶ https://lists.samba.org/archive/samba-technical/2022-October/thread.html#137734

▶ We may get an IORING POLL CANCEL ON CLOSE in future
▶ And a usable IORING POLL LEVEL

▶ We can use io uring deep inside of the smbclient code
▶ The low layers can just use samba io uring ev context get ring()
▶ And use if available without changing the whole stack

Stefan Metzmacher io uring (21/22)

Questions? Feedback!

▶ Stefan Metzmacher, metze@samba.org

▶ https://www.sernet.com

▶ https://samba.plus

→ SerNet/SAMBA+ sponsor booth

Slides: https://samba.org/˜metze/presentations/2023/SDC/

Stefan Metzmacher io uring (22/22)

https://lists.samba.org/archive/samba-technical/2022-October/thread.html#137734
https://www.sernet.com
https://samba.plus
https://www.sernet.com
https://samba.plus
https://samba.org/~metze/presentations/2023/SDC/

