
SMB Direct Support
within Samba and Linux

Stefan Metzmacher <metze@samba.org>

Samba Team / SerNet

2018-09-25

https://samba.org/~metze/presentations/2018/SDC/

https://samba.org/~metze/presentations/2018/SDC/

Topics

I What is SMB-Direct? What is RDMA?

I RDMA Verbs Specification/Protocols

I SMB-Direct Transport

I SMB3 Multichannel

I Support on Windows

I RDMA Stack on Linux (Kernel/Userspace)

I The first SMB-Direct experiments in Samba

I SMB-Direct Userspace Dispatcher for Samba

I SMB-Direct Kernel Implementation

I Recent Progress

I Future Optimizations

I The way to upstream

I Thanks!

I Questions?

Stefan Metzmacher SMB Direct Support (2/31)

What is SMB-Direct?
I SMB-Direct [MS-SMBD] is a simple transport layer

I Similar to TCP or Netbios
I Designed to serve SMB3 on top
I Provides additional out-of-band features
I I use ”SMB-Direct” as ”smbd” is the file server of Samba

I SMB-Direct focuses on performance
I Low latency and high throughput
I Minimal CPU utilization for I/O processing

I SMB-Direct requires RDMA (Remote Direct Memory Access)
I Supports Infiniband, RoCE and iWarp
I Typically implemented in hardware

I SMB-Direct is negotiated transparently
I SMB3 MultiChannel is used for the negotiation
I The strategy is up to the client, it can even skip an initial TCP

connection

Stefan Metzmacher SMB Direct Support (3/31)

What is SMB-Direct?
I SMB-Direct [MS-SMBD] is a simple transport layer

I Similar to TCP or Netbios
I Designed to serve SMB3 on top
I Provides additional out-of-band features
I I use ”SMB-Direct” as ”smbd” is the file server of Samba

I SMB-Direct focuses on performance
I Low latency and high throughput
I Minimal CPU utilization for I/O processing

I SMB-Direct requires RDMA (Remote Direct Memory Access)
I Supports Infiniband, RoCE and iWarp
I Typically implemented in hardware

I SMB-Direct is negotiated transparently
I SMB3 MultiChannel is used for the negotiation
I The strategy is up to the client, it can even skip an initial TCP

connection

Stefan Metzmacher SMB Direct Support (3/31)

What is SMB-Direct?
I SMB-Direct [MS-SMBD] is a simple transport layer

I Similar to TCP or Netbios
I Designed to serve SMB3 on top
I Provides additional out-of-band features
I I use ”SMB-Direct” as ”smbd” is the file server of Samba

I SMB-Direct focuses on performance
I Low latency and high throughput
I Minimal CPU utilization for I/O processing

I SMB-Direct requires RDMA (Remote Direct Memory Access)
I Supports Infiniband, RoCE and iWarp
I Typically implemented in hardware

I SMB-Direct is negotiated transparently
I SMB3 MultiChannel is used for the negotiation
I The strategy is up to the client, it can even skip an initial TCP

connection

Stefan Metzmacher SMB Direct Support (3/31)

What is SMB-Direct?
I SMB-Direct [MS-SMBD] is a simple transport layer

I Similar to TCP or Netbios
I Designed to serve SMB3 on top
I Provides additional out-of-band features
I I use ”SMB-Direct” as ”smbd” is the file server of Samba

I SMB-Direct focuses on performance
I Low latency and high throughput
I Minimal CPU utilization for I/O processing

I SMB-Direct requires RDMA (Remote Direct Memory Access)
I Supports Infiniband, RoCE and iWarp
I Typically implemented in hardware

I SMB-Direct is negotiated transparently
I SMB3 MultiChannel is used for the negotiation
I The strategy is up to the client, it can even skip an initial TCP

connection

Stefan Metzmacher SMB Direct Support (3/31)

What is RDMA?

I Direct Memory Access (DMA)
I Is available on all modern computer architectures
I Allows RAM to be accessed directly by attached devices
I Typically via the PCI(-Express) BUS without active CPU interaction

I Remote Direct Memory Access (RDMA)
I Makes DMA possible over networks to remote peers
I RDMA-capable NICs are called R-NICs
I Allows direct data transfers between application buffers
I Doesn’t require any CPU interaction in order to do the transfer
I Bypasses the operating system and its protocol stack

Stefan Metzmacher SMB Direct Support (4/31)

What is RDMA?

I Direct Memory Access (DMA)
I Is available on all modern computer architectures
I Allows RAM to be accessed directly by attached devices
I Typically via the PCI(-Express) BUS without active CPU interaction

I Remote Direct Memory Access (RDMA)
I Makes DMA possible over networks to remote peers
I RDMA-capable NICs are called R-NICs
I Allows direct data transfers between application buffers
I Doesn’t require any CPU interaction in order to do the transfer
I Bypasses the operating system and its protocol stack

Stefan Metzmacher SMB Direct Support (4/31)

RDMA Verbs Specification (Part1)
I The Specification defines various operations called ”Verbs”:

I They form Work Requests (WRs) which are ”posted”
via a Queue Pair (QP)

I The QP defines a bi-directional connection and interacts with the
hardware

I They expect Work Completions (WCs) to be signaled by the hardware
I WCs arrive though Completion Queues (CQs)
I Usage of RDMA requires Memory Registrations (MRs)
I The application needs to keep resources available between ”post” and

arrival of WC

I Available Verbs:
I SEND, SEND WITH IMM, SEND WITH INV
I REG MR, LOCAL INV
I RDMA WRITE, RDMA WRITE WITH IMM
I RDMA READ, RDMA READ WITH INV
I ATOMIC FETCH AND ADD, ATOMIC CMP AND SWP
I ...

Stefan Metzmacher SMB Direct Support (5/31)

RDMA Verbs Specification (Part1)
I The Specification defines various operations called ”Verbs”:

I They form Work Requests (WRs) which are ”posted”
via a Queue Pair (QP)

I The QP defines a bi-directional connection and interacts with the
hardware

I They expect Work Completions (WCs) to be signaled by the hardware
I WCs arrive though Completion Queues (CQs)
I Usage of RDMA requires Memory Registrations (MRs)
I The application needs to keep resources available between ”post” and

arrival of WC

I Available Verbs:
I SEND, SEND WITH IMM, SEND WITH INV
I REG MR, LOCAL INV
I RDMA WRITE, RDMA WRITE WITH IMM
I RDMA READ, RDMA READ WITH INV
I ATOMIC FETCH AND ADD, ATOMIC CMP AND SWP
I ...

Stefan Metzmacher SMB Direct Support (5/31)

RDMA Verbs Specification (Part2)

I The passive side needs to prepare in advance
I Posts fixed size RECVs to the R-NIC, in order to allow SENDs from

the peer to arrive
I Registers (REG MR) DMA regions with the hardware for

RDMA READ/WRITEs
I Invalidates (LOCAL INV) the region again once the RDMA operation

completed

I The active side triggers operations.
I Posts SENDs to the R-NIC in order to deliver a application message to

the peer
I It issues RDMA READ/WRITEs to the R-NIC specifying local buffers

and remote buffer descriptors

Stefan Metzmacher SMB Direct Support (6/31)

RDMA Verbs Specification (Part2)

I The passive side needs to prepare in advance
I Posts fixed size RECVs to the R-NIC, in order to allow SENDs from

the peer to arrive
I Registers (REG MR) DMA regions with the hardware for

RDMA READ/WRITEs
I Invalidates (LOCAL INV) the region again once the RDMA operation

completed

I The active side triggers operations.
I Posts SENDs to the R-NIC in order to deliver a application message to

the peer
I It issues RDMA READ/WRITEs to the R-NIC specifying local buffers

and remote buffer descriptors

Stefan Metzmacher SMB Direct Support (6/31)

RDMA Protocols
I There are multiple protocols proving comparable functionality

I InfiniBand (IB) was the first of these protocols
I Started arround 2000 as cluster node interconnect
I It provides very low latency and very high throughput
I But it requires special network cards and switches

I Internet Wide-area RDMA Protocol (iWarp)
I Started in 2007 with MPA rev1
I Implemented on top of TCP
I The current revision is MPA rev2 (defined in 2014)
I It provides low latency and high throughput
I Work on any IP based network infrastructure

I RDMA over Converged Ethernet (RoCE)
I Started arround 2010 with RoCE (v1) on raw ethernet
I RoCE v2 (from 2014) is implemented on top of UDP
I It provides low latency and high throughput
I Requires special configurations in network switches

Stefan Metzmacher SMB Direct Support (7/31)

RDMA Protocols
I There are multiple protocols proving comparable functionality

I InfiniBand (IB) was the first of these protocols
I Started arround 2000 as cluster node interconnect
I It provides very low latency and very high throughput
I But it requires special network cards and switches

I Internet Wide-area RDMA Protocol (iWarp)
I Started in 2007 with MPA rev1
I Implemented on top of TCP
I The current revision is MPA rev2 (defined in 2014)
I It provides low latency and high throughput
I Work on any IP based network infrastructure

I RDMA over Converged Ethernet (RoCE)
I Started arround 2010 with RoCE (v1) on raw ethernet
I RoCE v2 (from 2014) is implemented on top of UDP
I It provides low latency and high throughput
I Requires special configurations in network switches

Stefan Metzmacher SMB Direct Support (7/31)

RDMA Protocols
I There are multiple protocols proving comparable functionality

I InfiniBand (IB) was the first of these protocols
I Started arround 2000 as cluster node interconnect
I It provides very low latency and very high throughput
I But it requires special network cards and switches

I Internet Wide-area RDMA Protocol (iWarp)
I Started in 2007 with MPA rev1
I Implemented on top of TCP
I The current revision is MPA rev2 (defined in 2014)
I It provides low latency and high throughput
I Work on any IP based network infrastructure

I RDMA over Converged Ethernet (RoCE)
I Started arround 2010 with RoCE (v1) on raw ethernet
I RoCE v2 (from 2014) is implemented on top of UDP
I It provides low latency and high throughput
I Requires special configurations in network switches

Stefan Metzmacher SMB Direct Support (7/31)

RDMA Protocols
I There are multiple protocols proving comparable functionality

I InfiniBand (IB) was the first of these protocols
I Started arround 2000 as cluster node interconnect
I It provides very low latency and very high throughput
I But it requires special network cards and switches

I Internet Wide-area RDMA Protocol (iWarp)
I Started in 2007 with MPA rev1
I Implemented on top of TCP
I The current revision is MPA rev2 (defined in 2014)
I It provides low latency and high throughput
I Work on any IP based network infrastructure

I RDMA over Converged Ethernet (RoCE)
I Started arround 2010 with RoCE (v1) on raw ethernet
I RoCE v2 (from 2014) is implemented on top of UDP
I It provides low latency and high throughput
I Requires special configurations in network switches

Stefan Metzmacher SMB Direct Support (7/31)

SMB-Direct Transport
I Uses only a few RDMA verbs supported by all protocols

I SEND or SEND WITH INV(alidate) for datagram messages
I RDMA READ, RDMA WRITE for offloads

I It provides a 2-way full duplex transport
I Datagram style send/receive (similar to SOCK SEQPACKET)
I Large messages are send as multiple fragments

I Negotiation Request and Response figure out:
I Initial credits
I Max (fragmented) send and receive sizes
I Max read write sizes

I Data Transfer Messages handles the rest
I The payload contains from 0 up to max send size bytes
I It indicates the remaining length of following related fragments
I Sending a message requires having at least one credit
I The sender can ask for an immediate response
I For keepalive and credit refunding

Stefan Metzmacher SMB Direct Support (8/31)

SMB-Direct Transport
I Uses only a few RDMA verbs supported by all protocols

I SEND or SEND WITH INV(alidate) for datagram messages
I RDMA READ, RDMA WRITE for offloads

I It provides a 2-way full duplex transport
I Datagram style send/receive (similar to SOCK SEQPACKET)
I Large messages are send as multiple fragments

I Negotiation Request and Response figure out:
I Initial credits
I Max (fragmented) send and receive sizes
I Max read write sizes

I Data Transfer Messages handles the rest
I The payload contains from 0 up to max send size bytes
I It indicates the remaining length of following related fragments
I Sending a message requires having at least one credit
I The sender can ask for an immediate response
I For keepalive and credit refunding

Stefan Metzmacher SMB Direct Support (8/31)

SMB-Direct Transport
I Uses only a few RDMA verbs supported by all protocols

I SEND or SEND WITH INV(alidate) for datagram messages
I RDMA READ, RDMA WRITE for offloads

I It provides a 2-way full duplex transport
I Datagram style send/receive (similar to SOCK SEQPACKET)
I Large messages are send as multiple fragments

I Negotiation Request and Response figure out:
I Initial credits
I Max (fragmented) send and receive sizes
I Max read write sizes

I Data Transfer Messages handles the rest
I The payload contains from 0 up to max send size bytes
I It indicates the remaining length of following related fragments
I Sending a message requires having at least one credit
I The sender can ask for an immediate response
I For keepalive and credit refunding

Stefan Metzmacher SMB Direct Support (8/31)

SMB-Direct Transport
I Uses only a few RDMA verbs supported by all protocols

I SEND or SEND WITH INV(alidate) for datagram messages
I RDMA READ, RDMA WRITE for offloads

I It provides a 2-way full duplex transport
I Datagram style send/receive (similar to SOCK SEQPACKET)
I Large messages are send as multiple fragments

I Negotiation Request and Response figure out:
I Initial credits
I Max (fragmented) send and receive sizes
I Max read write sizes

I Data Transfer Messages handles the rest
I The payload contains from 0 up to max send size bytes
I It indicates the remaining length of following related fragments
I Sending a message requires having at least one credit
I The sender can ask for an immediate response
I For keepalive and credit refunding

Stefan Metzmacher SMB Direct Support (8/31)

How it looks like on the wire (Part1)

I The negotiation exchange

Stefan Metzmacher SMB Direct Support (9/31)

How it looks like on the wire (Part2)

I SMB over a Data Transfer Message

Stefan Metzmacher SMB Direct Support (10/31)

How it looks like on the wire (Part3)
I SMB3 Write with a RDMA Buffer Descriptor

Stefan Metzmacher SMB Direct Support (11/31)

How it looks like on the wire (Part4)

I The message flow of an SMB3 Write using RDMA READ

Stefan Metzmacher SMB Direct Support (12/31)

SMB3 MultiChannel

I SMB3 introduced the multi channel feature
I The client can enumerate the servers network interfaces
I The server returns IPv4/v6 addresses including an interface index,

capabilities and the link speed.
I The server can announce interfaces as RDMA-capable

I The client decides how to connect
I Typically it opens multiple connections and binds them together
I RDMA and higher link speeds are prefered for I/O

I SMB-Direct is just an additional transport
I Clients can also use it directly without multi channel
I Even SMB1 is possible over SMB-Direct

Stefan Metzmacher SMB Direct Support (13/31)

SMB3 MultiChannel

I SMB3 introduced the multi channel feature
I The client can enumerate the servers network interfaces
I The server returns IPv4/v6 addresses including an interface index,

capabilities and the link speed.
I The server can announce interfaces as RDMA-capable

I The client decides how to connect
I Typically it opens multiple connections and binds them together
I RDMA and higher link speeds are prefered for I/O

I SMB-Direct is just an additional transport
I Clients can also use it directly without multi channel
I Even SMB1 is possible over SMB-Direct

Stefan Metzmacher SMB Direct Support (13/31)

SMB3 MultiChannel

I SMB3 introduced the multi channel feature
I The client can enumerate the servers network interfaces
I The server returns IPv4/v6 addresses including an interface index,

capabilities and the link speed.
I The server can announce interfaces as RDMA-capable

I The client decides how to connect
I Typically it opens multiple connections and binds them together
I RDMA and higher link speeds are prefered for I/O

I SMB-Direct is just an additional transport
I Clients can also use it directly without multi channel
I Even SMB1 is possible over SMB-Direct

Stefan Metzmacher SMB Direct Support (13/31)

Support on Windows

I Windows first announced SMB-Direct with SMB 2.2.2 in 2011
I The initial version already showed really good results

I Windows Server 2012 was the first producation release
I It was released SMB 2.2.2 rebrandet as SMB 3.0.0
I It supports SMB-Direct out of the box
I The results were even more impressing

I In 2013 Windows Server 2012R2 shipped SMB 3.0.2
I SMB2 CHANNEL RDMA V1 INVALIDATE was implemented with

SEND WITH INV
I The server remotely invalidates the MR of the client
I This reduced the I/0 latency in the client stack dramatically
I It saved the LOCAL INV roundtrip to the hardware

Stefan Metzmacher SMB Direct Support (14/31)

Support on Windows

I Windows first announced SMB-Direct with SMB 2.2.2 in 2011
I The initial version already showed really good results

I Windows Server 2012 was the first producation release
I It was released SMB 2.2.2 rebrandet as SMB 3.0.0
I It supports SMB-Direct out of the box
I The results were even more impressing

I In 2013 Windows Server 2012R2 shipped SMB 3.0.2
I SMB2 CHANNEL RDMA V1 INVALIDATE was implemented with

SEND WITH INV
I The server remotely invalidates the MR of the client
I This reduced the I/0 latency in the client stack dramatically
I It saved the LOCAL INV roundtrip to the hardware

Stefan Metzmacher SMB Direct Support (14/31)

Support on Windows

I Windows first announced SMB-Direct with SMB 2.2.2 in 2011
I The initial version already showed really good results

I Windows Server 2012 was the first producation release
I It was released SMB 2.2.2 rebrandet as SMB 3.0.0
I It supports SMB-Direct out of the box
I The results were even more impressing

I In 2013 Windows Server 2012R2 shipped SMB 3.0.2
I SMB2 CHANNEL RDMA V1 INVALIDATE was implemented with

SEND WITH INV
I The server remotely invalidates the MR of the client
I This reduced the I/0 latency in the client stack dramatically
I It saved the LOCAL INV roundtrip to the hardware

Stefan Metzmacher SMB Direct Support (14/31)

RDMA Stack on Linux (Kernel/Userspace) (Part1)

I RDMA APIs related to SMB-Direct:
I rdma/rdma cma.h and infiniband/verbs.h in userspace
I rdma/rdma cm.h and rdma/ib verbs.h in the kernel

I The core implementation lives in the Linux Kernel
I Device drivers are implemented as kernel modules
I It includes a verbs API for in kernel consumers
I It provides for userspace access to the hardware

I The userspace libraries and providers were consolidated in 2016
I Before they were spread across multiple git repositories
I It was hard to find a system with a working RDMA stack.
I Now everything is available in the rdma-core git repository

I Recent distributions come with a usable RDMA stack
I Linux v4.10 together with the rdma-core related packages

Stefan Metzmacher SMB Direct Support (15/31)

RDMA Stack on Linux (Kernel/Userspace) (Part1)

I RDMA APIs related to SMB-Direct:
I rdma/rdma cma.h and infiniband/verbs.h in userspace
I rdma/rdma cm.h and rdma/ib verbs.h in the kernel

I The core implementation lives in the Linux Kernel
I Device drivers are implemented as kernel modules
I It includes a verbs API for in kernel consumers
I It provides for userspace access to the hardware

I The userspace libraries and providers were consolidated in 2016
I Before they were spread across multiple git repositories
I It was hard to find a system with a working RDMA stack.
I Now everything is available in the rdma-core git repository

I Recent distributions come with a usable RDMA stack
I Linux v4.10 together with the rdma-core related packages

Stefan Metzmacher SMB Direct Support (15/31)

RDMA Stack on Linux (Kernel/Userspace) (Part1)

I RDMA APIs related to SMB-Direct:
I rdma/rdma cma.h and infiniband/verbs.h in userspace
I rdma/rdma cm.h and rdma/ib verbs.h in the kernel

I The core implementation lives in the Linux Kernel
I Device drivers are implemented as kernel modules
I It includes a verbs API for in kernel consumers
I It provides for userspace access to the hardware

I The userspace libraries and providers were consolidated in 2016
I Before they were spread across multiple git repositories
I It was hard to find a system with a working RDMA stack.
I Now everything is available in the rdma-core git repository

I Recent distributions come with a usable RDMA stack
I Linux v4.10 together with the rdma-core related packages

Stefan Metzmacher SMB Direct Support (15/31)

RDMA Stack on Linux (Kernel/Userspace) (Part1)

I RDMA APIs related to SMB-Direct:
I rdma/rdma cma.h and infiniband/verbs.h in userspace
I rdma/rdma cm.h and rdma/ib verbs.h in the kernel

I The core implementation lives in the Linux Kernel
I Device drivers are implemented as kernel modules
I It includes a verbs API for in kernel consumers
I It provides for userspace access to the hardware

I The userspace libraries and providers were consolidated in 2016
I Before they were spread across multiple git repositories
I It was hard to find a system with a working RDMA stack.
I Now everything is available in the rdma-core git repository

I Recent distributions come with a usable RDMA stack
I Linux v4.10 together with the rdma-core related packages

Stefan Metzmacher SMB Direct Support (15/31)

RDMA Stack on Linux (Kernel/Userspace) (Part2)

I The userspace libraries require providers/drivers
I The provider needs to match the coresponding kernel driver
I Provider and kernel driver interact during the setup phase
I The userspace provider takes over the communication with the device
I The kernel is bypassed for most operations

I Linux supports RoCE and iWarp in pure software
I Extremely useful for testing! It’s easy to take network captures
I rdma rxe (upstream since v4.7) provides RoCEv2
I siw (SoftiWARP) provides iWarp as out of tree module
I https://github.com/zrlio/softiwarp dev-siw.mem ext works with v4.15

Stefan Metzmacher SMB Direct Support (16/31)

https://github.com/zrlio/softiwarp/tree/dev-siw.mem_ext

RDMA Stack on Linux (Kernel/Userspace) (Part3)

I librdmacm and libibverbs do not support a fork process model
I There are some fork related feature, but they are not useable for us
I Samba’s one process per client model is not supported
I Samba’s multi channel design with fd-passing to another process is also

not supported

Stefan Metzmacher SMB Direct Support (17/31)

The first SMB-Direct experiments in Samba

I SMB-Direct became my annual Microsoft interop lab hobby
I At the SDC 2012 I got a few iWarp cards from Chelsio
I I took network captures of the communication between Windows

Servers
I Then I wrote a wireshark dissector for SMB-Direct
I This way I got an understanding to understand the protocol

I The first experiments with the APIs and drivers
I I mainly used the SoftiWarp driver on my laptop
I I did some experiments with modifying rping to send packets

I SMB1 over SMB-Direct...
I One week later I a prototype for SMB-Direct in smbclient
I It only supported SMB1 at that time...
I But it was very useful to get an understaning about the protocol

Stefan Metzmacher SMB Direct Support (18/31)

The first SMB-Direct experiments in Samba

I SMB-Direct became my annual Microsoft interop lab hobby
I At the SDC 2012 I got a few iWarp cards from Chelsio
I I took network captures of the communication between Windows

Servers
I Then I wrote a wireshark dissector for SMB-Direct
I This way I got an understanding to understand the protocol

I The first experiments with the APIs and drivers
I I mainly used the SoftiWarp driver on my laptop
I I did some experiments with modifying rping to send packets

I SMB1 over SMB-Direct...
I One week later I a prototype for SMB-Direct in smbclient
I It only supported SMB1 at that time...
I But it was very useful to get an understaning about the protocol

Stefan Metzmacher SMB Direct Support (18/31)

The first SMB-Direct experiments in Samba

I SMB-Direct became my annual Microsoft interop lab hobby
I At the SDC 2012 I got a few iWarp cards from Chelsio
I I took network captures of the communication between Windows

Servers
I Then I wrote a wireshark dissector for SMB-Direct
I This way I got an understanding to understand the protocol

I The first experiments with the APIs and drivers
I I mainly used the SoftiWarp driver on my laptop
I I did some experiments with modifying rping to send packets

I SMB1 over SMB-Direct...
I One week later I a prototype for SMB-Direct in smbclient
I It only supported SMB1 at that time...
I But it was very useful to get an understaning about the protocol

Stefan Metzmacher SMB Direct Support (18/31)

SMB-Direct Userspace Dispatcher for Samba

I After a few years pausing I continued in 2016
I Ralph Böhme and I developed userspace SMB-Direct deamon
I It took care of all SMB-Direct logic
I It provided unix domain sockets to smbclient and smbd
I The prototype worked protocol-wise
I But it was way to slow in order to be useful beside research

I In 2017 I finally started to work on a kernel driver
I There were some unsuccessful attempts before
I But I gathered enough knowledge about the protocol
I I was very confident that something useful could be created

Stefan Metzmacher SMB Direct Support (19/31)

SMB-Direct Userspace Dispatcher for Samba

I After a few years pausing I continued in 2016
I Ralph Böhme and I developed userspace SMB-Direct deamon
I It took care of all SMB-Direct logic
I It provided unix domain sockets to smbclient and smbd
I The prototype worked protocol-wise
I But it was way to slow in order to be useful beside research

I In 2017 I finally started to work on a kernel driver
I There were some unsuccessful attempts before
I But I gathered enough knowledge about the protocol
I I was very confident that something useful could be created

Stefan Metzmacher SMB Direct Support (19/31)

Reasons for an SMB-Direct Kernel Implementation
I It should be as simple as possible

I SMB-Direct is just an other transport
I A stream socket with just sendmsg/recvmsg is all we need

I Should be usable just like a TCP socket
I Port 445 uses messages prefixed with a 4 byte length header
I The driver should detect the messages based on the 4 byte header
I The message needs to fit into the max fragmented send size
I The message is split into SMB-Direct DataTransferMessage pdus

I Minimize the required changes to Samba
I The SMB layer just needs to replace its socket() call
I For now we have smbdirect socket()

I Sometimes smbd blocks in syscalls
I close() or unlink() are not yet async
I They can be take up to minutes in cluster environments
I The kernel takes care of all keepalive handling
I And the connection would still be available

Stefan Metzmacher SMB Direct Support (20/31)

Reasons for an SMB-Direct Kernel Implementation
I It should be as simple as possible

I SMB-Direct is just an other transport
I A stream socket with just sendmsg/recvmsg is all we need

I Should be usable just like a TCP socket
I Port 445 uses messages prefixed with a 4 byte length header
I The driver should detect the messages based on the 4 byte header
I The message needs to fit into the max fragmented send size
I The message is split into SMB-Direct DataTransferMessage pdus

I Minimize the required changes to Samba
I The SMB layer just needs to replace its socket() call
I For now we have smbdirect socket()

I Sometimes smbd blocks in syscalls
I close() or unlink() are not yet async
I They can be take up to minutes in cluster environments
I The kernel takes care of all keepalive handling
I And the connection would still be available

Stefan Metzmacher SMB Direct Support (20/31)

Reasons for an SMB-Direct Kernel Implementation
I It should be as simple as possible

I SMB-Direct is just an other transport
I A stream socket with just sendmsg/recvmsg is all we need

I Should be usable just like a TCP socket
I Port 445 uses messages prefixed with a 4 byte length header
I The driver should detect the messages based on the 4 byte header
I The message needs to fit into the max fragmented send size
I The message is split into SMB-Direct DataTransferMessage pdus

I Minimize the required changes to Samba
I The SMB layer just needs to replace its socket() call
I For now we have smbdirect socket()

I Sometimes smbd blocks in syscalls
I close() or unlink() are not yet async
I They can be take up to minutes in cluster environments
I The kernel takes care of all keepalive handling
I And the connection would still be available

Stefan Metzmacher SMB Direct Support (20/31)

Reasons for an SMB-Direct Kernel Implementation
I It should be as simple as possible

I SMB-Direct is just an other transport
I A stream socket with just sendmsg/recvmsg is all we need

I Should be usable just like a TCP socket
I Port 445 uses messages prefixed with a 4 byte length header
I The driver should detect the messages based on the 4 byte header
I The message needs to fit into the max fragmented send size
I The message is split into SMB-Direct DataTransferMessage pdus

I Minimize the required changes to Samba
I The SMB layer just needs to replace its socket() call
I For now we have smbdirect socket()

I Sometimes smbd blocks in syscalls
I close() or unlink() are not yet async
I They can be take up to minutes in cluster environments
I The kernel takes care of all keepalive handling
I And the connection would still be available

Stefan Metzmacher SMB Direct Support (20/31)

Working (unoptimized) prototype (smbdirect.ko)
The diffstat of the smbdirect.ko (compiles against v4.10 up to master):

smbdirect.h | 541 ++++

smbdirect_accept.c | 676 +++++

smbdirect_connect.c | 751 ++++++

smbdirect_connection.c | 1532 +++++++++++

smbdirect_device.c | 232 ++

smbdirect_main.c | 132 +-

smbdirect_private.h | 779 ++++++

smbdirect_proc.c | 206 ++

smbdirect_socket.c | 2688 ++++++++++++++++++++

9 files changed , 7535 insertions (+), 2 deletions (-)

Userspace API for smbdirect (without optimizations):

int smbdirect_socket(int family , int type , int protocol);

int smbdirect_connection_get_parameters(int sockfd ,

struct smbdirect_connection_parameters *params);

ssize_t smbdirect_rdma_v1_register(int sockfd ,

struct smbdirect_buffer_descriptors_v1 *local ,

int iovcnt , const struct iovec *iov);

ssize_t smbdirect_rdma_v1_deregister(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *local);

ssize_t smbdirect_rdma_v1_writev(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *remote ,

int iovcnt , const struct iovec *iov);

ssize_t smbdirect_rdma_v1_readv(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *remote ,

int iovcnt , const struct iovec *iov);

Stefan Metzmacher SMB Direct Support (21/31)

Working (unoptimized) prototype (smbdirect.ko)
The diffstat of the smbdirect.ko (compiles against v4.10 up to master):

smbdirect.h | 541 ++++

smbdirect_accept.c | 676 +++++

smbdirect_connect.c | 751 ++++++

smbdirect_connection.c | 1532 +++++++++++

smbdirect_device.c | 232 ++

smbdirect_main.c | 132 +-

smbdirect_private.h | 779 ++++++

smbdirect_proc.c | 206 ++

smbdirect_socket.c | 2688 ++++++++++++++++++++

9 files changed , 7535 insertions (+), 2 deletions (-)

Userspace API for smbdirect (without optimizations):

int smbdirect_socket(int family , int type , int protocol);

int smbdirect_connection_get_parameters(int sockfd ,

struct smbdirect_connection_parameters *params);

ssize_t smbdirect_rdma_v1_register(int sockfd ,

struct smbdirect_buffer_descriptors_v1 *local ,

int iovcnt , const struct iovec *iov);

ssize_t smbdirect_rdma_v1_deregister(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *local);

ssize_t smbdirect_rdma_v1_writev(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *remote ,

int iovcnt , const struct iovec *iov);

ssize_t smbdirect_rdma_v1_readv(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *remote ,

int iovcnt , const struct iovec *iov);

Stefan Metzmacher SMB Direct Support (21/31)

Working (unoptimized) prototype (smbclient/smbd)

The diffstat of the client side changes:

libcli/smb/smb2_constants.h | 6 +

libcli/smb/smb2cli_read.c | 71 ++++-

libcli/smb/smb2cli_write.c | 81 +++--

libcli/smb/smbXcli_base.c | 313 ++++++++++++++++++++

libcli/smb/smbXcli_base.h | 32 ++

source3/lib/util_sock.c | 20 +-

6 files changed , 496 insertions (+), 27 deletions (-)

The diffstat of the server side changes:

source3/smbd/globals.h | 24 +++

source3/smbd/process.c | 17 ++

source3/smbd/smb2_negprot.c | 5 +

source3/smbd/smb2_read.c | 148 ++++++++++++++ -

source3/smbd/smb2_server.c | 199 +++++++++++++++++++ -

source3/smbd/smb2_tcon.c | 10 +

source3/smbd/smb2_write.c | 119 +++++++++++ -

7 files changed , 516 insertions (+), 6 deletions (-)

Stefan Metzmacher SMB Direct Support (22/31)

Working (unoptimized) prototype (smbclient/smbd)

The diffstat of the client side changes:

libcli/smb/smb2_constants.h | 6 +

libcli/smb/smb2cli_read.c | 71 ++++-

libcli/smb/smb2cli_write.c | 81 +++--

libcli/smb/smbXcli_base.c | 313 ++++++++++++++++++++

libcli/smb/smbXcli_base.h | 32 ++

source3/lib/util_sock.c | 20 +-

6 files changed , 496 insertions (+), 27 deletions (-)

The diffstat of the server side changes:

source3/smbd/globals.h | 24 +++

source3/smbd/process.c | 17 ++

source3/smbd/smb2_negprot.c | 5 +

source3/smbd/smb2_read.c | 148 ++++++++++++++ -

source3/smbd/smb2_server.c | 199 +++++++++++++++++++ -

source3/smbd/smb2_tcon.c | 10 +

source3/smbd/smb2_write.c | 119 +++++++++++ -

7 files changed , 516 insertions (+), 6 deletions (-)

Stefan Metzmacher SMB Direct Support (22/31)

SMB-Direct for the Linux Kernel cifs/smb3 client

I The Linux cifs/smb3 filesystem driver supports SMB-Direct
I Written by Long Li from Microsoft
I Upstreamed on v4.15, but still experimental in v4.19
I In the long run it should share a lot of code with my driver

I I have a prototype to let it use my smbdirect driver
I It will cleanup the layer mixing, which is currently in place
I Supports the SMB2 layer compounding without problems

The function call to create an SMB Direct socket (in kernel):

int smbdirect_sock_create_kern(struct net *net ,

int family , int type , int protocol ,

struct socket **res);

int smbdirect_kern_connection_get_parameters(struct socket *sock ,

struct smbdirect_connection_parameters *params);

ssize_t smbdirect_kern_rdma_v1_register_pages(struct socket *sock ,

struct smbdirect_buffer_descriptors_v1 *local ,

struct page *pages[], int num_pages ,

int pagesz , int fp_ofs , int lp_len);

ssize_t smbdirect_kern_rdma_v1_deregister(struct socket *sock ,

struct smbdirect_buffer_descriptors_v1 *local);

Stefan Metzmacher SMB Direct Support (23/31)

SMB-Direct for the Linux Kernel cifs/smb3 client

I The Linux cifs/smb3 filesystem driver supports SMB-Direct
I Written by Long Li from Microsoft
I Upstreamed on v4.15, but still experimental in v4.19
I In the long run it should share a lot of code with my driver

I I have a prototype to let it use my smbdirect driver
I It will cleanup the layer mixing, which is currently in place
I Supports the SMB2 layer compounding without problems

The function call to create an SMB Direct socket (in kernel):

int smbdirect_sock_create_kern(struct net *net ,

int family , int type , int protocol ,

struct socket **res);

int smbdirect_kern_connection_get_parameters(struct socket *sock ,

struct smbdirect_connection_parameters *params);

ssize_t smbdirect_kern_rdma_v1_register_pages(struct socket *sock ,

struct smbdirect_buffer_descriptors_v1 *local ,

struct page *pages[], int num_pages ,

int pagesz , int fp_ofs , int lp_len);

ssize_t smbdirect_kern_rdma_v1_deregister(struct socket *sock ,

struct smbdirect_buffer_descriptors_v1 *local);

Stefan Metzmacher SMB Direct Support (23/31)

SMB-Direct for the Linux Kernel cifs/smb3 client

I The Linux cifs/smb3 filesystem driver supports SMB-Direct
I Written by Long Li from Microsoft
I Upstreamed on v4.15, but still experimental in v4.19
I In the long run it should share a lot of code with my driver

I I have a prototype to let it use my smbdirect driver
I It will cleanup the layer mixing, which is currently in place
I Supports the SMB2 layer compounding without problems

The function call to create an SMB Direct socket (in kernel):

int smbdirect_sock_create_kern(struct net *net ,

int family , int type , int protocol ,

struct socket **res);

int smbdirect_kern_connection_get_parameters(struct socket *sock ,

struct smbdirect_connection_parameters *params);

ssize_t smbdirect_kern_rdma_v1_register_pages(struct socket *sock ,

struct smbdirect_buffer_descriptors_v1 *local ,

struct page *pages[], int num_pages ,

int pagesz , int fp_ofs , int lp_len);

ssize_t smbdirect_kern_rdma_v1_deregister(struct socket *sock ,

struct smbdirect_buffer_descriptors_v1 *local);

Stefan Metzmacher SMB Direct Support (23/31)

Recent Progress...

I I made very good progress last week at Microsoft
I I have a first functional prototype
I It still has memory leaks and misses some error checks
I But smbclient works against Windows and smbd using RDMA
I smbclient fills a 10GBit/s Link with TCP and iWarp

I Reduced CPU usage in the client using smbdirect:
I userspace CPU/time by 25%, system CPU/time by 30%
I Just in the first test run, without further optimization

I A lot of hardware/driver problems disrupted my work
I The same test with exactly the same software drop by 80%
I This happens for both TCP (also over the R-NIC) and iWarp/RoCE
I The Microsft SMB-Direct testsuite gets just a TCP reset
I While smbclient can connect without problems

Stefan Metzmacher SMB Direct Support (24/31)

Recent Progress...

I I made very good progress last week at Microsoft
I I have a first functional prototype
I It still has memory leaks and misses some error checks
I But smbclient works against Windows and smbd using RDMA
I smbclient fills a 10GBit/s Link with TCP and iWarp

I Reduced CPU usage in the client using smbdirect:
I userspace CPU/time by 25%, system CPU/time by 30%
I Just in the first test run, without further optimization

I A lot of hardware/driver problems disrupted my work
I The same test with exactly the same software drop by 80%
I This happens for both TCP (also over the R-NIC) and iWarp/RoCE
I The Microsft SMB-Direct testsuite gets just a TCP reset
I While smbclient can connect without problems

Stefan Metzmacher SMB Direct Support (24/31)

Recent Progress...

I I made very good progress last week at Microsoft
I I have a first functional prototype
I It still has memory leaks and misses some error checks
I But smbclient works against Windows and smbd using RDMA
I smbclient fills a 10GBit/s Link with TCP and iWarp

I Reduced CPU usage in the client using smbdirect:
I userspace CPU/time by 25%, system CPU/time by 30%
I Just in the first test run, without further optimization

I A lot of hardware/driver problems disrupted my work
I The same test with exactly the same software drop by 80%
I This happens for both TCP (also over the R-NIC) and iWarp/RoCE
I The Microsft SMB-Direct testsuite gets just a TCP reset
I While smbclient can connect without problems

Stefan Metzmacher SMB Direct Support (24/31)

Future Optimizations... (Part1)

I There are a lot of ways to further improve
I The key is to avoid latency and processing overhead
I We likely need to add NUMA awareness

I Towards the upper layer
I We can avoid syscalls by letting it prepare the memory descriptors
I Memory registrations can be hooked into msg control on sendmsg()
I Deregistrations can be made async
I Or even be removed with SMB >= 3.02 using SEND WITH INV

I Towards the RDMA layer
I We should reduce the roundtrips between CPU and R-NIC as much as

possible
I We can batch WRs by passing a list to ib post send/recv()
I For related operations can only request to be signaled on the last

operation
I The correct order is garanteed for posts and completions

Stefan Metzmacher SMB Direct Support (25/31)

Future Optimizations... (Part1)

I There are a lot of ways to further improve
I The key is to avoid latency and processing overhead
I We likely need to add NUMA awareness

I Towards the upper layer
I We can avoid syscalls by letting it prepare the memory descriptors
I Memory registrations can be hooked into msg control on sendmsg()
I Deregistrations can be made async
I Or even be removed with SMB >= 3.02 using SEND WITH INV

I Towards the RDMA layer
I We should reduce the roundtrips between CPU and R-NIC as much as

possible
I We can batch WRs by passing a list to ib post send/recv()
I For related operations can only request to be signaled on the last

operation
I The correct order is garanteed for posts and completions

Stefan Metzmacher SMB Direct Support (25/31)

Future Optimizations... (Part1)

I There are a lot of ways to further improve
I The key is to avoid latency and processing overhead
I We likely need to add NUMA awareness

I Towards the upper layer
I We can avoid syscalls by letting it prepare the memory descriptors
I Memory registrations can be hooked into msg control on sendmsg()
I Deregistrations can be made async
I Or even be removed with SMB >= 3.02 using SEND WITH INV

I Towards the RDMA layer
I We should reduce the roundtrips between CPU and R-NIC as much as

possible
I We can batch WRs by passing a list to ib post send/recv()
I For related operations can only request to be signaled on the last

operation
I The correct order is garanteed for posts and completions

Stefan Metzmacher SMB Direct Support (25/31)

Future Optimizations... (Part2)

I Typically smbd serves files from a kernel filesystem
I Bytes are copied via the filesystem into a userspace buffer
I The userspace buffer is then handed to the smbdirect socket
I This happens for SMB3 Read
I In the reversed direction for SMB3 Write

Possible functions to avoid data copy on the server:

ssize_t smbdirect_rdma_v1_write_from_file(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *remote ,

int source_fd , size_t source_length , off_t source_offset);

ssize_t smbdirect_rdma_v1_read_to_file(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *remote ,

int source_fd , size_t source_length , off_t source_offset);

I These could be further optimized
I ”rdma write from file” could use msg control of sendmsg()
I Both can be made async with some epoll based completion
I The completion could be batched with msg control on recvmsg()

Stefan Metzmacher SMB Direct Support (26/31)

Future Optimizations... (Part2)

I Typically smbd serves files from a kernel filesystem
I Bytes are copied via the filesystem into a userspace buffer
I The userspace buffer is then handed to the smbdirect socket
I This happens for SMB3 Read
I In the reversed direction for SMB3 Write

Possible functions to avoid data copy on the server:

ssize_t smbdirect_rdma_v1_write_from_file(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *remote ,

int source_fd , size_t source_length , off_t source_offset);

ssize_t smbdirect_rdma_v1_read_to_file(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *remote ,

int source_fd , size_t source_length , off_t source_offset);

I These could be further optimized
I ”rdma write from file” could use msg control of sendmsg()
I Both can be made async with some epoll based completion
I The completion could be batched with msg control on recvmsg()

Stefan Metzmacher SMB Direct Support (26/31)

Future Optimizations... (Part2)

I Typically smbd serves files from a kernel filesystem
I Bytes are copied via the filesystem into a userspace buffer
I The userspace buffer is then handed to the smbdirect socket
I This happens for SMB3 Read
I In the reversed direction for SMB3 Write

Possible functions to avoid data copy on the server:

ssize_t smbdirect_rdma_v1_write_from_file(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *remote ,

int source_fd , size_t source_length , off_t source_offset);

ssize_t smbdirect_rdma_v1_read_to_file(int sockfd ,

const struct smbdirect_buffer_descriptors_v1 *remote ,

int source_fd , size_t source_length , off_t source_offset);

I These could be further optimized
I ”rdma write from file” could use msg control of sendmsg()
I Both can be made async with some epoll based completion
I The completion could be batched with msg control on recvmsg()

Stefan Metzmacher SMB Direct Support (26/31)

Future Optimizations... (Part3)

I It’s not unlikely that we hit generic performance bottlenecks
I Samba’s smbd runs in usermode
I It uses a single process (wit helper threads) per client

I RDMA Push Mode for SMB3
I Microsoft is researching a full I/O offload between client and server
I The client memory maps the file
I The server creates MRs for file ranges on persistent memory
I The client uses direct RDMA operations without SMB3 READ/WRITE
I Requires new RDMA Verbs to be implemented

I Push mode will remove the usermode restrictions
I smbd just needs to perform an mmap and create MRs
I All the rest happens outside of smbd

Stefan Metzmacher SMB Direct Support (27/31)

Future Optimizations... (Part3)

I It’s not unlikely that we hit generic performance bottlenecks
I Samba’s smbd runs in usermode
I It uses a single process (wit helper threads) per client

I RDMA Push Mode for SMB3
I Microsoft is researching a full I/O offload between client and server
I The client memory maps the file
I The server creates MRs for file ranges on persistent memory
I The client uses direct RDMA operations without SMB3 READ/WRITE
I Requires new RDMA Verbs to be implemented

I Push mode will remove the usermode restrictions
I smbd just needs to perform an mmap and create MRs
I All the rest happens outside of smbd

Stefan Metzmacher SMB Direct Support (27/31)

Future Optimizations... (Part3)

I It’s not unlikely that we hit generic performance bottlenecks
I Samba’s smbd runs in usermode
I It uses a single process (wit helper threads) per client

I RDMA Push Mode for SMB3
I Microsoft is researching a full I/O offload between client and server
I The client memory maps the file
I The server creates MRs for file ranges on persistent memory
I The client uses direct RDMA operations without SMB3 READ/WRITE
I Requires new RDMA Verbs to be implemented

I Push mode will remove the usermode restrictions
I smbd just needs to perform an mmap and create MRs
I All the rest happens outside of smbd

Stefan Metzmacher SMB Direct Support (27/31)

The way to upstream (Part1)
I This is currently a hobby project

I I have like 2-3 weeks a year to work on it
I Only about 2-3 month since the first experiments in 2012
I At that level it will take a few additional years to get production ready
I Sponsors are most welcome!

I Items of step 1 (the smbdirect driver):
I The code quality needs to be cleaned up
I We need to handle all possible errors
I ftrace based trace points would make debugging much easier
I We need a standalone testsuite that runs without Samba
I Then we can optimize further

I Items of step 2 (multi channel support in Samba):
I We need to make multi channel production ready (with tests)
I We need to plugin SMB-Direct to the multi channel layer
I We need to think about ways to automatically test the SMB-Direct

code path

Stefan Metzmacher SMB Direct Support (28/31)

The way to upstream (Part1)
I This is currently a hobby project

I I have like 2-3 weeks a year to work on it
I Only about 2-3 month since the first experiments in 2012
I At that level it will take a few additional years to get production ready
I Sponsors are most welcome!

I Items of step 1 (the smbdirect driver):
I The code quality needs to be cleaned up
I We need to handle all possible errors
I ftrace based trace points would make debugging much easier
I We need a standalone testsuite that runs without Samba
I Then we can optimize further

I Items of step 2 (multi channel support in Samba):
I We need to make multi channel production ready (with tests)
I We need to plugin SMB-Direct to the multi channel layer
I We need to think about ways to automatically test the SMB-Direct

code path

Stefan Metzmacher SMB Direct Support (28/31)

The way to upstream (Part1)
I This is currently a hobby project

I I have like 2-3 weeks a year to work on it
I Only about 2-3 month since the first experiments in 2012
I At that level it will take a few additional years to get production ready
I Sponsors are most welcome!

I Items of step 1 (the smbdirect driver):
I The code quality needs to be cleaned up
I We need to handle all possible errors
I ftrace based trace points would make debugging much easier
I We need a standalone testsuite that runs without Samba
I Then we can optimize further

I Items of step 2 (multi channel support in Samba):
I We need to make multi channel production ready (with tests)
I We need to plugin SMB-Direct to the multi channel layer
I We need to think about ways to automatically test the SMB-Direct

code path

Stefan Metzmacher SMB Direct Support (28/31)

The way to upstream (Part2)

I We need to coordinate with the Linux Kernel Developers:
I What will be way to expose the UAPI
I Could we expose it as IPPROTO SMBDIRECT (with a number > 255)
I Is it ok to use ioctl()’s for the extended operations?
I Do we need to implement more of the struct sock/socket function

pointers?
I In what directory could it be placed in the kernel, net/smbdirect/ ?

I It could be used just internally by cifs.ko first
I We could defer exposing a UAPI until everything is stable
I Once it provides the same quality as the current smbdirect

implementation, we could switch

I When can we add it to upstream Samba?
I Would it be ok to have as an optional feature?
I While it still relies on an externel kernel module?
I Can we add some magic to socket wrapper for autobuild?

Stefan Metzmacher SMB Direct Support (29/31)

The way to upstream (Part2)

I We need to coordinate with the Linux Kernel Developers:
I What will be way to expose the UAPI
I Could we expose it as IPPROTO SMBDIRECT (with a number > 255)
I Is it ok to use ioctl()’s for the extended operations?
I Do we need to implement more of the struct sock/socket function

pointers?
I In what directory could it be placed in the kernel, net/smbdirect/ ?

I It could be used just internally by cifs.ko first
I We could defer exposing a UAPI until everything is stable
I Once it provides the same quality as the current smbdirect

implementation, we could switch

I When can we add it to upstream Samba?
I Would it be ok to have as an optional feature?
I While it still relies on an externel kernel module?
I Can we add some magic to socket wrapper for autobuild?

Stefan Metzmacher SMB Direct Support (29/31)

The way to upstream (Part2)

I We need to coordinate with the Linux Kernel Developers:
I What will be way to expose the UAPI
I Could we expose it as IPPROTO SMBDIRECT (with a number > 255)
I Is it ok to use ioctl()’s for the extended operations?
I Do we need to implement more of the struct sock/socket function

pointers?
I In what directory could it be placed in the kernel, net/smbdirect/ ?

I It could be used just internally by cifs.ko first
I We could defer exposing a UAPI until everything is stable
I Once it provides the same quality as the current smbdirect

implementation, we could switch

I When can we add it to upstream Samba?
I Would it be ok to have as an optional feature?
I While it still relies on an externel kernel module?
I Can we add some magic to socket wrapper for autobuild?

Stefan Metzmacher SMB Direct Support (29/31)

Thanks!

I’d like to thank:

→ Chelsio for giving me iWarp NICs to test with!

→ Tom Talpey and others from Microsoft for the great help and support!

→ elements.tv for the access to RoCE test hardware

Stefan Metzmacher SMB Direct Support (30/31)

Questions?

I Stefan Metzmacher, metze@samba.org

I https://www.sernet.com

I https://samba.plus

→ SerNet/SAMBA+ sponsor booth

Work in Progress (smbdirect.ko):

https://git.samba.org/?p=metze/linux/smbdirect.git;a=summary

Work in Progress (Samba):

https://git.samba.org/?p=metze/samba/wip.git;a=shortlog;h=refs/heads/master3-smbdirect

Slides:

https://samba.org/˜metze/presentations/2018/SDC/

Stefan Metzmacher SMB Direct Support (31/31)

https://www.sernet.com
https://samba.plus
https://www.sernet.com
https://samba.plus
https://git.samba.org/?p=metze/linux/smbdirect.git
https://git.samba.org/?p=metze/samba/wip.git;a=shortlog;h=refs/heads/master3-smbdirect
https://samba.org/~metze/presentations/2018/SDC/

