Python usage in Samba and OpenChange

Jelmer Vernooij

Samba OpenChange

y N
sSamonaa
7

PUN December 7, 2008

Agenda

0 Introduction

9 Scripting

Q The JavaScript days
e Python

© Bindings

Q Future

e Examples

Introduction

What is Samba ?

@ Free (GPLv3) implementation of the SMB protocol and
others

e DCE/RPC, NetBIOS, LDAP, CLDAP, Kerberos, ...
@ “Network Neighborhood” (and more) for POSIX
@ Traditionally written in C
@ Extremely portable
@ About the same age as Python ('91)
@ Developed by a team of 25 people
@ Originally developed thru network analysis

Introduction

What is Samba ? - Branches

@ Samba 3
@ Proven, stable, codebase
@ Samba 4

@ Our very own “Duke Nukem Forever”

e Originally started in 2003, as an effort to improve the file
server

e Strong focus on the right infrastructure

Introduction

What is OpenChange ?

@ Free implementation of the MAPI protocol

e As used by Microsoft Outlook/Exchange
e Works on top of the DCE/RPC protocol

@ Being build on top of Samba 4
@ French project, started in 2003
@ Evolution OpenChange plugin will ship with GNOME 2.26

Introduction

Who am 1?

@ CS Student
@ FOSS developer, working on:

e Samba, mostly Samba 4
e OpenChange
e Bazaar

Scripting

Samba and scripting

@ We are all C programmers
@ Scripting: awk, shell or perl

@ Samba had Python bindings for a while

e Removed after several years because they were
unmaintained

Scripting

Why scripting?

@ Within Samba

e Quicker development
e Easier to debug
e Easier to understand

@ Lower barrier for contributions?
@ For users

o Easier to customize
o Easier to use (administrator scripts, etc)

The JavaScript days

And the winner is...

@ Original choice: JavaScript

@ Small, fast engine (small enough to include with Samba)
@ Familiar to a lot of developers out there

@ Alot like C (familiar to developers)

The JavaScript days

JavaScript: Problems

@ Alotlike C

@ Sucks as a scripting language

o No exceptions
e Poor string manipulation functions
e No keyword arguments

@ No bindings for standard libraries

@ The library we were using was different from the standard
library

e Contributors had to learn yet another language (dialect)
@ No development tools
@ Hard to write unit tests

Python

Why Python?

@ Comes “with batteries included”

e No need to reimplement utility functions and bindings for
Samba

Easy to create bindings

Most existing libraries already have Python bindings
o GTK+, Qt, HTTP, .ini-parsers...

Large existing developer base
e Potential contributors

Better scripting language

o Nested functions
e Modularity

More development tools available
e Debugger, profiler, code coverage analyser, ...

Python

Why not something else?

@ Several developers already knew (and liked) Python
@ Alternatives
e Perl: Hard to use C API, silly syntax
e Ruby: Not well known enough
e Lua: Not really well suited for application development, just
small snippets
e Scheme: well, ...

Python

Concerns

@ Our first ever mandatory build-dependency other than
libc. ..

@ A lot of code to migrate, requiring effort that could be
useful elsewhere

@ Maintainability

e Unit tests mandatory
@ Should be used by core code

Bindings

@ Doesn’t require a lot of effort to generate simple bindings

@ Can generate bindings for multiple languages at the same
time

@ Generates portable code

However...

Bindings

@ Doesn’t require a lot of effort to generate simple bindings
@ Can generate bindings for multiple languages at the same
time
@ Generates portable code
However...

@ Tends to create very C-like Python bindings

Bindings

@ Doesn’t require a lot of effort to generate simple bindings
@ Can generate bindings for multiple languages at the same
time
@ Generates portable code
However...

@ Tends to create very C-like Python bindings
@ Customization language is hard to grasp

Bindings

@ Doesn’t require a lot of effort to generate simple bindings
@ Can generate bindings for multiple languages at the same
time
@ Generates portable code
However...

@ Tends to create very C-like Python bindings
@ Customization language is hard to grasp
@ Unreadable generated C code

Bindings

Pyrex/Cython

@ Very Python-like
But...

Bindings

Pyrex/Cython

@ Very Python-like
But...

@ Needs to be run on the developer machine (extra
build-dependency)

Bindings

Pyrex/Cython

@ Very Python-like
But...

@ Needs to be run on the developer machine (extra
build-dependency)

@ Doesn’t support certain

Bindings

Pyrex/Cython

@ Very Python-like
But...
@ Needs to be run on the developer machine (extra
build-dependency)
@ Doesn’t support certain
@ Unreadable generated C code

Bindings

Manual bindings

@ The Python C API really isn’t that bad

@ Allows close integration between our memory manager
and Pythons

@ Much more flexible than autogenerated Python bindings

Bindings

Partially generated from IDL

IDL Code

NTSTATUS unixinfo_GetPWUid (

[in,out, ref, range (0,1023)] uint32 =xcount,

[in, size_is (xcount)] hyper uids|[],
[out,size_is(*count)] unixinfo_GetPWUidInfo infos[x*]
)

Python API

S.GetPWUid(uids) — > infos

Bindings

Current state of affairs

@ Mostly used for administrative tools:

e provisioning the databases after installation

@ web service? (wsgi compatible)

e Server functionality and performance-dependent
e Some nifty GUI tools based on GTK+

@ Popular for writing tests
@ Performance-dependent code is still all in C

And most importantly:
@ Developers seem reasonably happy

More crazy Samba Python hacks

@ Full Python coverage of our libraries
@ More GNOME integration in Python
@ win32com on Linux?

@ Port to Samba 37

@ Server partially in Python?

OpenChange

@ Provisioning already uses Python
@ Most client tools will be in Python
@ Bindings still to be done

Remaining and new concerns

@ No good standard mechanism for asynchronous functions
(yet?)

@ Some users are running Python older than 2.4

@ Python3000 will drop support for some of our platforms

@ Supporting all combinations of platforms with Python
installed turned out to be quite a challenge

Examples

Reading TDB files

import tdb, sys

1
2

3 db = tdb.Tdb(sys.argv[1])

4 for (k, v) in db.items():

5 print "{”

6 print "key(%d).=%r" % (len(k), k)
7 print "data(%d).=%r" % (len(v), v)
8 print ”}”

Examples

Using LDB

1
2
3
4
5
6
7
8
9
0

#1/usr/bin/python

import |db

conn = ldb.Ldb(”msg.tdb”)

conn.add({”dn”: “dc=samba,dc=org”, "attr1”: "foo”})

for msg in conn.search(”dc=samba,dc=o0rg”):
print str(msg.dn)

—

Examples

Connecting to LDAP using LDB

1
2
3
4
5
6
7
8
9

#1/usr/bin/python
import Idb

Connect to the LDAP server
conn = Idb.Ldb(”ldap ://ldap.abmas.org/”)

for msg in conn.search(”dc=samba,dc=0rg”):
print str(msg.dn)

Examples

Adding users

1 #!/usr/bin/python

2 import samr, lIsa

3

4 # Connect to the local SAM

5 conn = samr.samr(”ncalrpc:”, ”"st/dc/etc/smb.conf”)
6

7 # Get SAMR connect handle

8 samr_handle = conn.Connect(0, Oxfffffff)

9

10 domainname = lIsa. String ()

11 domainname. string = u”SAMBADOMAIN”

12

13 sid = conn.LookupDomain(samr_handle, domainname)
14 print "Found.sid %s.for _SAMBADOMAIN” % sid

15

16 conn.Close(samr_handle)

Examples

Unit tests

1 import winreg

2 from samba.tests import RpclinterfaceTestCase
3

class WinregTests(RpclnterfaceTestCase):
def setUp(self):
self.conn = winreg.winreg(”ncalrpc:”, self.get_lc

def test_hkim(self):
handle = self.conn.OpenHKLM(None,
winreg .KEY_QUERY_VALUE | winreg.KEY_ENU

4
5
6
7
8
9
0
1 self.conn.CloseKey(handle)

Examples

More information

@ http://www.samba.org/
@ http://www.openchange.org/
@ |IRC: #samba-technical | #openchange on Freenode

If you have ideas about asynchronous function usage, please
let me know.

http://www.samba.org/
http://www.openchange.org/

	Introduction
	Scripting
	The JavaScript days
	Python
	Bindings
	Future
	Examples

