
Implementing Distributed COM in Samba

Jelmer Vernooij jelmer@samba.org
Samba Team Member

February 2, 2005

Abstract

COM, standing for “Component Object Model” is one of the key fea-
tures of the Microsoft Windows platform. COM allows developers to use
and create interfaces that can have several implementations and can be
called by different programs, written in different languages. The only
thing the involved parties have to agree upon is the interface.

Most widely known is COM as the core of other technologies such as
OLE, ActiveX and Automation. Even the .NET platform supports COM.

DCOM is the distributed version of COM. It is implemented on top
of DCE/RPC and was documented in a internet RFC. This document
describes the way DCOM works and how it will be implemented in Samba-
4.

THIS DOCUMENT IS A DRAFT AND IS BY NO
MEANS FINAL YET

Contents

1 Introduction to ’plain’ COM 2
1.1 Interfaces . 3
1.2 Implementations (Classes) . 3
1.3 Instances (Objects) . 3
1.4 Interfaces Pointers . 3
1.5 Calling methods . 3
1.6 Creating an object . 4

2 Defining Interfaces 4

3 Distributed COM 5
3.1 Proxies and stubs . 5
3.2 Object Exporters . 5
3.3 ORPC . 6
3.4 Marshalling . 7
3.5 Activation . 7
3.6 OXIDs . 7
3.7 Garbage Collection . 8
3.8 Running Object Table . 8

1

Class X
CLSID

IUnknown
IID

IStream
IID

ICoffeeMachine
IID

ISequentialStream

IID

Class Y
CLSID

Figure 1: An example of DCOM’s distinction between interface and implemen-
tation

4 Integration in Samba 4 8
4.1 COM implementation . 8

4.1.1 Pidl extensions . 9
4.2 DCOM implementation . 10

4.2.1 Pidl extensions . 10

5 Future integration 10
5.1 Mono . 10
5.2 Wine . 11
5.3 Mozilla (ActiveX) . 11

1 Introduction to ’plain’ COM

The terminology used in the COM world can be quite confusing. Especially all
the various ID’s 1 and the different meanings of the word class tend to confuse
people. A broader introduction to COM is available on the web at [6] and [1].

Basically, there are three entities that are important in COM:

• Interface

• Implementation

• Instance

COM has a very clear distinction between interface and implementation.
Calls are always made by interface, while the specific implementation is only
mentioned when a new object is created.

1so far I have seen: MID, OXID, OID, IPID, CID, IID, CLSID, LCID and DISPID.

2

1.1 Interfaces

Interfaces are the basic elements in COM. An interface is nothing more then a
definition of a list of methods that can be run on an object.

Interfaces support inheritance, so if interface A is based upon B it contains
all of B’s methods and it’s own. All interfaces are based upon the “IUnknown”
interface.

Interfaces are identifier by Interface ID’s (IID’s). IID’s are globally unique
(they are GUID’s).

Windows hosts keep a list of interface in their registry, at HKEY CLASSES ROOT\interface.
Note that HKEY CLASSES ROOT is a “dynamic” registry key created

by merging all keys in HKEY CURRENT USER\Software\Classes and
HKEY LOCAL MACHINE\Software\Classes.

1.2 Implementations (Classes)

A COM Class (usually abbreviated to “coclass”) is an implementation of one
or more interfaces.

Classes are identified by Class ID’s (CLSID’s), which are also supposed to be
globally unique. Some of them also have a “Prog ID”, which is a human-readable
unique string (e.g. “MyCompany.MyClass”). Those familiar with Java, Python
or C#, might recognize their similarity to packages in those languages.

Windows hosts keep a list of classes they know in the registry at HKEY CLASSES ROOT\CLSID.

1.3 Instances (Objects)

Objects are instances of classes and are identified by object ID’s (OID’s).
Funny enough, classes by themselves are objects as well (sometimes referred

to as “class objects”). The methods on a class object are somewhat equivalent
to the static methods that can be found in languages like C++, Java and C#.

The most important method on a class object is the CreateInstance method
that returns a new instance of the class. The CreateInstance method is part
of the IClassFactory interface, which is implemented by pretty much all class
objects.

1.4 Interfaces Pointers

When making calls to object, the object is never referenced itself — only the
specific interface on a certain instance. Such an “instance of an interface” is
called an Interface Pointer. For example, to do a read on a stream, one does
(in simplified C++):

char buffer[20];
IUnknown *instance;
com_create_simple_object(Foo_CLSID, &instance);
((IStream *)instance)->Read(20, buffer);

1.5 Calling methods

The methods in a class are merely implementations of methods defined by the
interfaces that class supports. You always use the interface.

3

Penguin

IBird

Caller

EatFish()

Figure 2: A local COM call

In order to call a method, you first obtain a handle to the relevant interface
on your object. That handle is unique for that specific interface on that specific
object on the server host and is called a Interface Pointer ID (IPID). You can
obtain such a handle by calling the QueryInterface method, which is part of
the IUnknown interface.

1.6 Creating an object

In the COM world, there are three ways for obtaining an instance of an object:

• Binding directly to the “Class Object”. This can be used to do either a
“static” call or to call CreateInstance (if the class object supports the
IClassFactory interface) which returns a new class instance

• Create an instance based on the CLSID. Windows looks up the CLSID in
the registry, finds the associated DLL or EXE and loads it. (CoGetInstanceFromFile())

• From Persistent State Object

Objects returned by other calls all use one of the three ways described above
in way or another.

ActiveX controls embedded into browsers can also use URL’s to get access
to an instance of an object.

2 Defining Interfaces

In the Windows world, COM structures, interfaces and classes are specified
in ODL (Object Definition Language). ODL is basically DCE/RPC IDL with
a few extensions. Originally, these ODL files were compiled by a tool called
mktyplib[5] but later support for ODL was merged into the midl[4] tool which
is used on Windows to compile DCE/RPC IDL files. During this process some
ODL features were lost [2].

The main extensions ODL makes to IDL are:

• inheritance for interfaces. Base classes can be specified in a fashion similar
to C++ class inheritance.

• ”object” interfaces, i.e. interface that can have instances. Specified by
adding object to the properties of the interface.

4

Caller

IBird Proxy
EatFish()

IBird

IBird Stub

EatFish() (RPC)

Penguin

IBird

EatFish()

Figure 3: A remote COM call using DCOM

• passing pointers to interface instances. Either an explicit interface name
can be specified or the iidis() property can be used to pass a pointer to
an interface (run-time) identified by a custom IID.

• writing “type library files”, i.e. binary files that contain a binary version
of the interface definition (extension: .tlb

3 Distributed COM

Distributed COM is nothing more then a ’hack’ to let standard COM run re-
motely. It was added later as a way to allow the distribution COM objects over
multiple computers. It is basically the glue between DCE/RPC [10] and COM.

DCOM is not as closed as one might think — there are several documents
available from Microsoft explaining the wire format [7, 8]. There has even been
an internet draft on DCOM [9].

3.1 Proxies and stubs

When doing COM remotely, instead of directly calling the object one would like
to use, the client does the call on a ’stub’ object that takes care of the network
call.

The stub, which is usually autogenerated, then does one or more DCE/RPC
calls and passes along the data it receives.

On the server side (where the ’real’ object remains) the DCE/RPC subsys-
tem forwards the RPC call to a proxy object (also autogenerated, usually) that
then makes a call to the real object.

In the Windows world, MIDL generates these proxies and stubs. In Samba,
these classes are generated by pidl.

3.2 Object Exporters

Every object lives in a certain context, known to Windows programmers as an
apartment. Calls crossing apartment boundaries need marshalling. Usually, an

5

Object

OID

Implemented Interface 1

IPID

Implemented Interface 2

IPID

Object Exporter Context

OXID

Object

OID

Implemented Interface 1

IPID

Implemented Interface 2

IPID

Implemented Interface 3

IPID

Figure 4: The object exporter

the term apartment maps to a thread. Apartments are identified remotely by
OXIDs2.

3.3 ORPC

DCOM is implemented on top of DCE/RPC[10] and uses the optional object
field in the DCE/RPC header, in which it stores the IPID. This extension is
usually referred to as ORPC (Object RPC).

Other then this minor change, there is no need for modifications to the
client-side DCE/RPC implementation.

All DCOM calls have a mandatory extra [in] and a mandatory extra [out]
argument that always occur before the other arguments. These arguments (OR-
PCTHIS and ORPCTHAT) contain COM version and extension information.

2I think these are just thread IDs, which are unique to the system on Windows.

6

3.4 Marshalling

When an interface pointer is sent across the wire using NDR, it is transformed
into a OBJREF struct by the proxy, after which it is sent as a normal NDR
structure.

The proxy can marshall interface pointers into the OBJREF struct using
three possible methods:

• Standard marshalling

• Handler marshalling (Requires the interface to implement IStdMarshal-
Info)

• Custom marshalling (Requires the interface to implement IMarshal)

3.5 Activation

Before an object can be used, it has to be activated (created). Older DCOM
implements use the “plain” IRemoteActivation interface for this purpose while
newer implementations (2000 and above) use the object interface ISystemActivator3.

This interface can be called with a CLSID and a list of interfaces the client
would like to use on the new object. The server will then (locally) do a number
of calls:

1. GetClassObject(CLSID)

2. IClassFactory::CreateInstance()

3. IUnknown::QueryInterface() (once for each interface in the list)

4. IUnknown::Release()

Next to a list of interface pointers, the server also returns an OXID and a list
of SECURITYBINDINGS and STRINGBINDINGS belonging to this OXID.

3.6 OXIDs

Objects don’t have to live at the same endpoint or even the same host they were
activated at. For this purpose, every interface pointer that is sent over the wire
contains an OXID (Object Exporter ID) and a resolver address.

If the client wants to do a call on an interface pointer, it asks the remote
server listening on the resolver address where the object with the given OXID
can be reached. The server will respond with a list of SECURITYBINDINGS
and STRINGBINDINGS.

The STRINGBINDING structs as returned by IRemoteActivation and IOXIDResolver
can easily be converted to DCE/RPC binding strings while the SECURITY-
BINDING structs contain possible account names that can be used to authen-
ticate.

3I suspect this interface is implemented by the System.Activator class in .NET

7

3.7 Garbage Collection

In order to make sure objects aren’t kept running long after the client that
created them crashed horribly, clients have to regularly send pings to the host
they are living on. Pinging is done based on OID (object ID’s) rather then
IPID’s. Objects can be grouped together in PingSets, which makes it possible
to ping thousands of objects with a just a very small packet.

Objects are generally presumed dead if none of their clients have pinged
them for 3 minutes.

3.8 Running Object Table

Every machine keeps a list of the objects it exports.
The running object table can be accessed using the IROT[3] interface, which

is available at the same endpoint as the endpoint mapper (which corresponds
to the rpcss.exe process on Windows).

4 Integration in Samba 4

The first attempt to implement DCOM in Samba 4 failed because it was aimed
at implementing both DCOM and COM together, ignoring the concept of proxy
classes. This attempt failed because it made matters very complicated.

The final attempt seperates the COM and DCOM implementations (some-
what similar to Windows), making the code simpler.

• lib/com contains a very simple (but sufficient) COM implementation.

• lib/com/interfaces contains pidl generated structure files for the COM
interfaces

• lib/dcom contains the glue between DCE/RPC (NDR) and COM.

• lib/dcom/proxies contains the pidl-generated proxy files

4.1 COM implementation

Since Samba is written in C, which is not object-oriented, object-oriented calls
are ’emulated’. This works pretty much in the same fashion as the GTK+4

project uses it.
For example, the following Windows code:

IClassFactory *pcf = 0;
CoGetClassObject(CLSID_Penguin, CLSCTX_ALL,0, IID_IClassFactory, (void**)\&pcf);
IBird *pBird = 0;
pcf->CreateInstance(0, IID_IBird, (void**)\&pBird);
pcf->Release();
pBird->EatFish();
pBird->Release();

would translate to :
4http://www.gtk.org/

8

struct IClassFactory *pcf = NULL;
struct IBird *pBird = NULL;
com_get_class_object(CLSID_Penguin, IID_IClassFactory, &pcf);
IClassFactory_CreateInstance(pcf, mem_ctx, 0, IID_IBird, &pBird);
IUnknown_Release(pcf, mem_ctx);
IBird_EatFish(pBird, mem_ctx);
IUnknown_Release(pBird, mem_ctx);

in Samba.

4.1.1 Pidl extensions

Samba 4 will support ODL files in it’s regular IDL compiler rather then creating
a seperate compiler for ODL files. Reason for this is the fact that ODL files
are really not that different from IDL files. Also, the extensions made by ODL
do not require large amounts of changes in the pidl code nor do they cause
additional code complexity in pidl.

The additional pidl module comheader.pm generates C header files that con-
tain structs with function pointers for each object interface. They also generate
wrapper macros for easier use of the interfaces.

For example, a header file generated by comheader.pm for an ODL file con-
taining the IUnknown and IStream object interfaces would look like this:

/* Interface */

\#define IUNKNOWN_METHODS \
int (*Release) (struct IUnknown *, TALLOC_CTX *mem_ctx); \
int (*AddRef) (struct IUnknown *, TALLOC_CTX *mem_ctx); \
void (*QueryInterface) (struct IUnknown *, TALLOC_CTX *mem_ctx, struct GUID *iid, void **);

struct IUnknown_vtable {
IUNKNOWN_METHODS
};

\#define ISTREAM_METHODS \
IUNKNOWN_METHODS \
void (*Read) (struct IStream *, TALLOC_CTX *mem_ctx);

struct IStream_vtable {
ISTREAM_METHODS
};

/* Instance */
struct IUnknown {
struct com_context *ctx;
struct IUnknown_vtable *vtable;
void *object_data;
};

and wrapper functions:

9

\#define IUnknown_QueryInterface(i,m,p1,p2) (i->vtable->QueryInterface(i->object_data, m, p1, p2))
...

4.2 DCOM implementation

4.2.1 Pidl extensions

A new Pidl module, proxy.pm, generates one proxy class (implementation) per
interface. The functions int this class each simply call their DCE/RPC equiva-
lents (similar to Windows).

Another new Pidl module, stub.pm, generates one stub with a custom dis-
patch function for each interface. This dispatch function looks up the interface
pointer in the running object table and then calls the apprioriate function on
the interface pointer.

- Problem:
Need MInterfacePointer in NDR-related stuff, but

need struct IUnknown / void in com_header, etc. (with IID)

- Always set iid_is() for Interface names occurring in IDL
- Need different treatment in com_header.pm and proxy.pm
- For each object interface, define a
ndr_{push,pull}_IUnknown() that just does a push/pop of an MInterfacePointer
- unknown interfaces are a different story, but always require a iid_is(), so always encode a MInterfacePointer when an iid_is() is set.
- in the proxy, do a conversion from "real interface pointer" <-> MInterfacePointer
- when iid_is() was set
- What when iid_is() not set?
- See if \$NAME is registered as an interface or as a struct. If it’s
not registered at all, use something like this:

\#ifdef COM_IUNKNOWN_UUID
/* Conversion from MInterfacePointer */
\#else
/* Plain assignment
\#endif

TODO:
Split out NDR-related and other stuff in ndr_*.h

5 Future integration

5.1 Mono

(Ideas)

• support incoming DCOM calls from Windows clients

• support outgoing DCOM calls to Windows hosts

10

5.2 Wine

(Ideas)

• ability to disable either rpcss or Samba’s epmapper support

• use epmapper and rot pipe internally as well as externally

• support for ncacn unix ds: in wine or ncalrpc: in the same fashion as
Samba?

• Proposal: Keep all the object management stuff in Samba, but allow Wine
(thru the ROT interface) to add new objects. This allows the Wine folks to
use the Samba infrastructure for now, while giving them the opportunity to
move to a Wine-specific implementation of this stuff later on, if necessary.

5.3 Mozilla (ActiveX)

There is a plugin for windows only at the moment, available in Mozilla CVS 5.
Maybe extend to support *nix ?

References

[1] URL http://www.codeguru.com/Cpp/COM-Tech/activex/tutorials/
article.php/c5567/.

[2] Differences between midl and mktyplib. . URL http://msdn.
microsoft.com/library/default.asp?url=/library/en-us/midl/
midl/differences_between_midl_and_mktyplib.asp.

[3] Irunningobjecttable. URL http://msdn.microsoft.com/library/
en-us/com/htm/cmi_q2z_8go5.asp.

[4] Microsoft interface definition language. . URL http://msdn.microsoft.
com/library/default.asp?url=/library/en-us/midl/midl/midl_
start_page.asp.

[5] Mktyplib command-line tool. URL http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/com/htm/ctrans_8a7g.
asp.

[6] Don Box. Essential COM. Addison Wesley Longman, Inc.,
1998. URL http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnesscom/html/msdn_essential_com.asp.

[7] Guy Eddon and Henry Eddon. Understanding the dcom wire protocol.
1998. URL http://www.microsoft.com/msj/0398/dcom.aspx.

[8] Markus Horstmann and Mary Kirtland. Dcom architecture. 1997.
URL http://msdn.microsoft.com/library/en-us/dndcom/html/msdn_
dcomarch.asp.

5http://www.iol.ie/ locka/mozilla/plugin.htm

11

http://www.codeguru.com/Cpp/COM-Tech/activex/tutorials/article.php/c5567/
http://www.codeguru.com/Cpp/COM-Tech/activex/tutorials/article.php/c5567/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/midl/midl/differences_between_midl_and_mktyplib.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/midl/midl/differences_between_midl_and_mktyplib.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/midl/midl/differences_between_midl_and_mktyplib.asp
http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_8go5.asp
http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_8go5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/midl/midl/midl_start_page.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/midl/midl/midl_start_page.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/midl/midl/midl_start_page.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/ctrans_8a7g.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/ctrans_8a7g.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/ctrans_8a7g.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnesscom/html/msdn_essential_com.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnesscom/html/msdn_essential_com.asp
http://www.microsoft.com/msj/0398/dcom.aspx
http://msdn.microsoft.com/library/en-us/dndcom/html/msdn_dcomarch.asp
http://msdn.microsoft.com/library/en-us/dndcom/html/msdn_dcomarch.asp

[9] Charlie Kindel Nat Brown. Distributed component object model
— dcom/1.0. 1998. URL http://www.grimes.demon.co.uk/DCOM/
DCOMSpec.htm.

[10] Open Group. DCE 1.1: Remote Procedure Call, 1997. URL http://www.
opengroup.org/onlinepubs/9629399/toc.htm.

12

http://www.grimes.demon.co.uk/DCOM/DCOMSpec.htm
http://www.grimes.demon.co.uk/DCOM/DCOMSpec.htm
http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.opengroup.org/onlinepubs/9629399/toc.htm

	Introduction to 'plain' COM
	Interfaces
	Implementations (Classes)
	Instances (Objects)
	Interfaces Pointers
	Calling methods
	Creating an object

	Defining Interfaces
	Distributed COM
	Proxies and stubs
	Object Exporters
	ORPC
	Marshalling
	Activation
	OXIDs
	Garbage Collection
	Running Object Table

	Integration in Samba 4
	COM implementation
	Pidl extensions

	DCOM implementation
	Pidl extensions

	Future integration
	Mono
	Wine
	Mozilla (ActiveX)

