
Programming the AT89S8252 using SPI

Jelmer Vernooij

August 5, 2003

Thanks to Hans Tjeerdsma for his help with understanding the datasheets and
debugging

Abstract

Copyright c© 2003 Jelmer Vernooij (jelmer@samba.org). This docu-
mentation is distributed under the GNU General Public License (GPL)
version 2 or later.

Contents

1 Introduction 1

2 Reasons for writing my own programmer 2

3 The way other manufacturers do it 2

4 Other data lines used by the Atmel 2

5 The SPI protocol 2
5.1 How does SPI work? . 3

6 AT89* commands 4
6.1 Enabling program modus . 4
6.2 Erasing code and data memory 4
6.3 Writing data to code memory . 4
6.4 Reading from code memory . 5
6.5 Writing to data memory . 5
6.6 Reading from data memory . 5
6.7 Locking memory . 5

7 Tips 5

1 Introduction

The 8051 and 8052 microprocessors are very common processors. Quite some
manufacturers (among them are Intel, Atmel and Analog Devices) produce 8051
processors. Personally, I have experience with the Atmel and the Analog Devices
processors.

Atmel’s 8051 processors can be programmed with two different protocols: a
parallel protocol that I will not discuss here, and the SPI protocol.

1

2 Reasons for writing my own programmer

There are several SPI programmers available for the Atmel 8051 series, however
only few of them are available for Linux, and none that I could find used a serial
port or had a GUI.

Available programmers (and reasons not to use them):

• ponyprog — has a GUI and is written in C++

• 89prog — uses the parallel port

• sp89 — uses the parallel port

• atmel-isp — only for windows, no source code available

And of course, figuring out the protocol with the help of a logic analyser and
some datasheets is a lot of fun...

3 The way other manufacturers do it

Previously, for my work, I have written a programmer for Analog Devices 8051.
Their protocol is quite a bit better since it uses the standard RS232 protocol.
Something that also helps is the fact that their microcontroller acknowledges or
(refuses) commands it gets, while with the AT89 processors, you just have to
guess that the processor understood what you wanted.

Next to that, Analog Devices provided an example program that could be
used to program the microcontroller of the serial port.

4 Other data lines used by the Atmel

Next to the lines necessary for SPI, there is another used for putting the pro-
cessor in programmable mode:

RST Reset. Used to put microprocessor in programmable state. Also used to
restart running program (by toggling). (Connected to DTR on my board)

My own circuit board has uses an additional port that is used to confirm
that CHK has been set.

When the RST port on the 8051 has been set, the processor listens for SPI
input and handles incoming data.

5 The SPI protocol

So, what is SPI? SPI is a very simple serial data protocol. This means that
bytes are send serially instead of parallel. SPI is a standard protocol that is
used mainly in embedded devices. It falls in the same family as I2C or RS232.

As can be read in Atmel’s datasheets (document 0401 to be precise), the
SPI protocol uses 3 lines:

MOSI (Master Out, Slave In) Data line, in my case sitting on the TxD of my
serial port

2

Figure 1: Sending the bit pattern 00110100 using SPI

MISO (Master In, Slave Out) Data line, controlled by client. (In my case on
CTS)

SCK The Clock (in my case on RTS of the serial port)

5.1 How does SPI work?

The SPI works with two parties: the slave and the master. The master controls
the line. In my case the personal computer is the master and the 8051 is the
slave. There is another data line (Slave Select) that is used to select who the
slave is, but I didn’t need to use that bit.

The master sets a bit on the MOSI and then generates a clock pulse, after
which the next bit is set and another clock pulse is generated, etc.

A clock pulse is generated by simply setting the SCK bit high and then low
again after a few microseconds.

Here is my SPI Out function:

void SPI Out (int b)
{

int i ;
for (i = 7 ; i >= 0; i −−) {

i f (b & (1 << i)) SetMOSI () ;
else ClearMOSI () ;
wa i tmicrosec (2) ;
SetSCK () ;
wa i tmicrosec (3) ;
ClearSCK () ;
wa i tmicrosec (2) ;

}
}

Reading data from the slave is done in a similar way. The server requests
data from the slave, after which it generates clock pulses on which the slave sets
the MISO line.

My SPI In function:

int SPI In ()
{

int i , b = 0 ;
for (i = 7 ; i >= 0; i −−) {

SetSCK () ;
wa i tmicrosec (2) ;
i f (GetMISO()) b |= 1 << i ;

3

waitmicrosec (3) ;
ClearSCK () ;
wa i tmicrosec (2) ;

}
return b ;

}

That’s basically all that SPI does. It’s that simple!

6 AT89* commands

This section describes the various commands that can be sent to the 8051 over
SPI when it’s RST bit is set.

6.1 Enabling program modus

Before the 8051 accepts any commands, it needs to be put into command mode.
That’s what this command is for. Always run this command before you run any
other command.

void programming ()
{

/∗ Send enab l e s e r i a l i n s t r u c t i o n to MOSI ∗/
SPI Out (0xAC) ; /∗ 1010 1100 ∗/
SPI Out (0 x53) ; /∗ 0101 0011 ∗/
SPI Out (0 x00) ; /∗ xxxx xxxx (don ’ t care) ∗/
wa i tm i l l i s e c (9) ;

}

6.2 Erasing code and data memory

void e ra s e ()
{

SPI Out (0xAC) ; /∗ 1010 1100 ∗/
SPI Out (0 x04) ; /∗ xxxx x100 (x = don ’ t care) ∗/
SPI Out (0 x00) ; /∗ xxxx xxxx (don ’ t care) ∗/
wa i tm i l l i s e c (9) ;

}

6.3 Writing data to code memory

void wri tecode (int addr , char b)
{

/∗ hhhh h010 ∗/
SPI Out (0 x02 | ((addr >> 5) & 0xF8) | ((addr >> 11) & 0x04)) ;
SPI Out (addr & 0xFF) ; /∗ l l l l l l l l ∗/
SPI Out (b) ;
w a i tm i l l i s e c (6) ;

}

4

6.4 Reading from code memory

int readcode (int addr)
{

/∗ hhhh h001 ∗/
SPI Out (0 x01 | ((addr >> 5) & 0xF8) | ((addr >> 11) & 0x04)) ;
SPI Out (addr & 0xFF) ; /∗ l l l l l l l l ∗/
return SPI In () ;

}

6.5 Writing to data memory

void wri tedata (int addr , char b)
{

SPI Out (0 x06 | ((addr >> 5) & 0xF8)) ;
SPI Out (addr & 0xFF) ; /∗ l l l l l l l l ∗/
SPI Out (b) ;

}

6.6 Reading from data memory

int readdata (int addr)
{

SPI Out (0 x05 | ((addr >> 5) & 0xF8)) ;
SPI Out (addr & 0xFF) ; /∗ l l l l l l l l ∗/
return SPI In () ;

}

6.7 Locking memory

void l o ck (int byte)
{

int mask = 0 x f f & ˜ byte ;

SPI Out (0xAC) ; /∗ 1010 1100 ∗/
SPI Out (mask | 0 x07) ; /∗ pqrx x111 ∗/
SPI Out (0) ; /∗ xxxx xxxx ∗/
wa i tm i l l i s e c (9) ;

}

7 Tips

These are some random tips that might be useful when you are interested in
implementing the SPI protocol or the 8051 programming that is running over
it.

• Make sure you clear and set the RST line in the beginning of your program

• Make sure you wait long enough between clock pulses and that clock pulses
are long enough

• A logic analyser is very useful when debugging timing problems

5

References

[1] Atmel: AT89S8252 Datasheet, http://www.atmel.com/dyn/resources/prod documents/doc0401.pdf

[2] Rob Melby: Atmel 89 programmer, http://www.cc.gatech.edu/gvu/ccg/people/rob/software/89prog.tar.gz

6

