
Towards Full Coverage Testing

Jim Myers and Andrew Tridgell
IBM Almaden Research Center

myersjj@us.ibm.com, tridge@au.ibm.com



Old testing method

� The Samba project has previously developed 
testsuites of 3 main kinds:

� ad-hoc tests for a range of specific conditions

� full-coverage tests for a very small range of operations

� randomised testing for a very small range of operations

� This approach did work to some extent, but 
suffered from some major drawbacks:

� many parts of the protocol remained completely untested

� many fields untested within the tested parts of the protocol

� difficult to expand to be comprehensive



New Testing Methodology

� The new testing system in Samba4 is based on a 
few basic components:

� a comprehensive raw client library

� individual tests covering every field of every call

� a randomised dual-server tester with broad coverage

� a "CIFS on CIFS" storage backend for the Samba4 server

� These components work together to provide a 
testing capability far beyond what could be 
achieved with our earlier testsuites



Raw Client Library

� The heart of the new testing system is a 'raw' 
comprehensive client library. Unlike our previous 
client library this allows easy generation of all 
SMBs, with control over all fields in each request

� New features include:

� async interfaces

� oplock support

� no 'smarts' - send exactly what is asked for

� Note that it takes a lot code to use the new 
interface compared to the old one. The old 
interface is still available as a wrapper



C interface to raw library

int fnum = cli_open(cli, "\\test.dat", O_RDWR, DENY_READ);

NTSTATUS status;
union smb_open io;

io.generic.level = RAW_OPEN_OPENX;
io.openx.in.flags = OPENX_FLAGS_ADDITIONAL_INFO;
io.openx.in.open_mode = OPEN_MODE_ACCESS_RDWR;
io.openx.in.search_attrs = FILE_ATTRIBUTE_SYSTEM|FILE_ATTRIBUTE_HIDDEN;
io.openx.in.file_attrs = 0;
io.openx.in.write_time = 0;
io.openx.in.open_func = OPENX_OPEN_FUNC_OPEN;
io.openx.in.size = 0;
io.openx.in.timeout = 0;
io.openx.in.fname = "\\test.dat";

req = smb_raw_open_send(tree, &io);
status = smb_raw_open_recv(req, mem_ctx, &io);

Old interface:

New Interface:



Individual tests

� Built on top of the raw client library is a set of 
individual tests:

� Each SMB request is individually tested, with separate tests 
for every information level of every call

� Every field of every request is tested, but only with a 
limited range of values

� 'Correct' results are in most cases defined by how W2K3 
behaves, except where this is very obviously incorrect

� If a value can be returned in N ways, then all N are tested 
to confirm that they are equal

� Includes testing of EAs, streams and many unusual requests



String Termination

� Testing for correct string termination by servers 
has proved to be very important

� Each test that retrieves a string tests that the 
server uses correct alignment and termination for 
that request

� The 'wire length' fields are also tested, as 
sometimes these should include the termination 
and sometimes they should not



Level Scanners

� A level scanner is a program that tries every 
subcall and information level of a CIFS 
transaction request such as TRANS2

� The test suite includes two types of level 
scanners:

� a scanner that finds calls and levels, their size and their 
request type

� a scanner that automatically determines what levels are 
aliases of other levels



CIFS Backend

� A new feature in Samba4 is the ability to define 
arbitrary storage backends at the 'raw' CIFS level

� A backend that has proved incredibly useful for 
testing is the 'CIFS' backend, that uses a remote 
CIFS server for all operations:

� uses the raw client library for remote server access

� ideal for testing core server infrastructure

� combined with the individual tests and gentest it allows the 
server side CIFS parsing to be tested in isolation



gentest

� gentest is the 'big gun' CIFS test program that I 
have wanted to build for many years. Basic 
features include:

� dual server, dual instance testing

� randomised, broad coverage request generation

� automatic backtracking for finding minimal request subset

� can cover all fields of all requests

� full async oplock testing



Dual Server Testing

� The basis of gentest is 'dual server testing', the 
same basic technique used in the 'locktest' 
program from earlier versions of Samba:

� The test program establishes two connections to each of 
two servers

� Random requests are then generated, with identical 
requests sent to the two servers

� At each step gentest compares every field of every response 
between the two servers

� When a response differs gentest uses backtracking to find 
the minimal subset of the requests sent so far that generates 
a difference in response



Request Generation

� Request generation is based on the concept of a 
'generator' function for each request in CIFS

� The generator for a CIFS request calls into a 
library of 'field generators' that produce 
constrained random values for each type of field 
in the protocol. 

� Field generators include things like 
gen_timeout(), gen_io_count(), gen_fnum(), 
gen_fname() etc



Field Generation

� The generators for individual fields are heavily 
biased towards interesting values, while allowing 
for arbitrary values in most cases:

� gen_fnum() will most of the time generate an open file 
handle (if one exists), but will sometimes generate an 
invalid handle

� Some fields (like IO counts) are tightly constrained to 
prevent filling of disks

� Flags fields are heavily biased towards valid sets of flags, 
but have a small chance of generating arbitrary sets of bits



Backtracking

� When a difference is discovered between the two 
servers gentest goes into 'analyze' mode, using a 
backtracking technique to find the minimal subset 
of requests that produce a difference:

� successively smaller chunks of the request streams are 
blocked out

� If a difference is still reported when a chunk is blocked out 
then that chunk is not needed and can be discarded

� reconnects to the servers and wipes all files at each pass

� The final pattern of requests can be replayed for analysis 
with a network sniffer



Oplock testing

� It has previously proved very difficult to write a 
good oplock test program. With gentest it is quite 
easy:

� The field generators often randomly produce open requests 
with oplock flags set

� At each request oplock break requests are checked for, and 
compared between the two servers

� When an oplock break is received gentest chooses at 
random whether the break will be acknowledged or the file 
closed



Ignore Patterns

� Some portions of the protocol are expected to 
vary between servers, and some portions are 
known to be unimplemented by some servers

� To cope with this gentest allows for a set of 
'ignore patterns'. These come in several forms:

� patterns matching types of requests that should not be 
generated at all

� patterns matching "don't care" fields that are allowed to 
differ

� patterns matching generated data and information levels 
that tells gentest not to generate those requests



Standard Ignore Patterns

� I have found the following set of ignore patterns 
to be necessary for operation between two W2K3 
servers:

all_info.out.fname
compression_info.out.*_shift
internal_information.out.*



gentest problems

� There are a number of limitations and problems 
with the gentest approach to testing:

� it can be very slow, especially with servers that response 
slowly to certain failed operations

� no multiple vuid testing yet

� tests are avoided that would kill the connection

� some filesystem properties (like sticky create times) can 
cause problems

� The biggest problem is that before gentest is 
useful for testing against other servers you have to 
be very close in behaviour



Major uses for gentest

� gentest can be used for quite a wide range of 
purposes:

� the obvious use is to compare behaviour to a reference 
server

� very useful for comparing two versions of your server to 
see what you broke

� allows checking for internal consistancy of your server by 
running against two shares on the same server. This finds 
intermittent bugs and uninitialised values quickly

� gives very wide code coverage, which makes it ideal to run 
in combination with memory testers like valgrind



Questions?

Legal statement:
This work represents the views of the authors, and does not necessarily represent the views of IBM


