
Samba4 – A New Beginning

Andrew Tridgell
Samba Team



Major Features

● The basic goals of Samba4 are quite ambitious, 
but achievable:

● protocol completeness
● extreme testability
● non-POSIX backends
● fully asynchronous internals
● flexible process models



Protocol Completeness

● CIFS/SMB is a huge protocol, but is not infinite. 
● In previous versions of Samba we implemented 

new protocol elements “on demand”, only adding 
an element when we saw an application using it.

● In Samba4 the new attitude is “implement 
everything”



Old testing method

● The Samba project has previously developed 
testsuites of 3 main kinds:

● ad-hoc tests for a range of specific conditions
● full-coverage tests for a very small range of operations
● randomised testing for a very small range of operations

● This approach did work to some extent, but 
suffered from some major drawbacks:

● many parts of the protocol remained completely untested
● many fields untested within the tested parts of the protocol
● difficult to expand to be comprehensive



New approach: extreme testability

● The new testing system in Samba4 is based on a 
few basic components:

● a comprehensive raw client library
● individual tests covering every field of every call
● a randomised dual-server tester with broad coverage
● a "CIFS on CIFS" storage backend for the Samba4 server

● These components work together to provide a 
testing capability far beyond what could be 
achieved with our earlier testsuites



CIFS Plugfest



Raw Client Library

● The heart of the new testing system is a 'raw' 
comprehensive client library. Unlike our previous 
client library this allows easy generation of all 
SMBs, with control over all fields in each request

● New features include:
● async interfaces
● oplock support
● no 'smarts' - send exactly what is asked for

● Note that it takes a lot code to use the new 
interface compared to the old one. The old 
interface is still available as a wrapper



C interface to raw library

int fnum = cli_open(cli, "\\test.dat", O_RDWR, DENY_READ);

NTSTATUS status;
union smb_open io;

io.generic.level = RAW_OPEN_OPENX;
io.openx.in.flags = OPENX_FLAGS_ADDITIONAL_INFO;
io.openx.in.open_mode = OPEN_MODE_ACCESS_RDWR;
io.openx.in.search_attrs = FILE_ATTRIBUTE_SYSTEM|FILE_ATTRIBUTE_HIDDEN;
io.openx.in.file_attrs = 0;
io.openx.in.write_time = 0;
io.openx.in.open_func = OPENX_OPEN_FUNC_OPEN;
io.openx.in.size = 0;
io.openx.in.timeout = 0;
io.openx.in.fname = "\\test.dat";

req = smb_raw_open_send(tree, &io);
status = smb_raw_open_recv(req, mem_ctx, &io);

Old interface:

New Interface:



CIFS Backend

● A new feature in Samba4 is the ability to define 
arbitrary storage backends at the 'raw' CIFS level

● A backend that has proved incredibly useful for 
testing is the 'CIFS' backend, that uses a remote 
CIFS server for all operations:

● uses the raw client library for remote server access
● ideal for testing core server infrastructure
● combined with the individual tests and gentest it allows the 

server side CIFS parsing to be tested in isolation



gentest

● gentest is the 'big gun' CIFS test program that I 
have wanted to build for many years. Basic 
features include:

● dual server, dual instance testing
● randomised, broad coverage request generation
● automatic backtracking for finding minimal request subset
● can cover all fields of all requests
● full async oplock testing



Dual Server Testing

● The basis of gentest is 'dual server testing', the 
same basic technique used in the 'locktest' 
program from earlier versions of Samba:

● The test program establishes two connections to each of two 
servers

● Random requests are then generated, with identical requests 
sent to the two servers

● At each step gentest compares every field of every response 
between the two servers

● When a response differs gentest uses backtracking to find the 
minimal subset of the requests sent so far that generates a 
difference in response



Request Generation

● Request generation is based on the concept of a 
'generator' function for each request in CIFS

● The generator for a CIFS request calls into a 
library of 'field generators' that produce 
constrained random values for each type of field in 
the protocol. 

● Field generators include things like gen_timeout(), 
gen_io_count(), gen_fnum(), gen_fname() etc



Field Generation

● The generators for individual fields are heavily 
biased towards interesting values, while allowing 
for arbitrary values in most cases:

● gen_fnum() will most of the time generate an open file 
handle (if one exists), but will sometimes generate an invalid 
handle

● Some fields (like IO counts) are tightly constrained to 
prevent filling of disks

● Flags fields are heavily biased towards valid sets of flags, but 
have a small chance of generating arbitrary sets of bits



Backtracking

● When a difference is discovered between the two 
servers gentest goes into 'analyze' mode, using a 
backtracking technique to find the minimal subset 
of requests that produce a difference:

● successively smaller chunks of the request streams are 
blocked out

● If a difference is still reported when a chunk is blocked out 
then that chunk is not needed and can be discarded

● reconnects to the servers and wipes all files at each pass
● The final pattern of requests can be replayed for analysis 

with a network sniffer



Unix<->Unix Connectivity

● Samba is finally breaking away from its 
Windows-only roots and starting to look seriously 
at providing a good Unix to Unix filesystem.

● The Unix CIFS extensions are gaining acceptance 
by several vendors. 

● hard links, symlinks, devices
● rename and unlink open files

● The new cifs-vfs Linux client is leading the way, 
and may eventually become a viable challenger to 
replace NFS



Process Models

● Samba3 only supported a “one client, one fork” 
process model

● In Samba4 the process model is pluggable, 
allowing the model to match the environment and 
backend

● Three process model modules are currently 
available:

● 'single' - one process for all clients
● 'standard' - the old Samba3 model
● 'thread' - a pthread per client



Portability
● Samba is agressively portable
● See build farm at http://build.samba.org/



Current Status

● The effort to build Samba4 has so far taken 2 
people about 6 months

● RAW client library done
● test suite done
● NTVFS layer done
● CIFS backend done
● TANK backend done

● To get this far we have dropped a great deal of 
fundamental functionality that users have come to 
expect from Samba. That needs to be replaced.



More Info

● So, you want to help? Good!
● Get the code from the 'samba4' cvs module on samba.org
● Join the samba-technical IRC channel and mailing list
● Not for the faint of heart! This is not production code yet
● See http://samba.org/ftp/samba/slides/samba4_auug.pdf for a copy 

of these slides

Questions?

This work represents the views of the author, and does not necessarily represent the views of IBM


