
Linux and Samba

Andrew Tridgell
Samba Team



Semantic Mapping

● Providing CIFS file services on Linux is an 
exercise in “semantic mapping”. The detail of 
mapping that is needed depends on the role the 
server needs to play

● most detailed as a NAS box
● dual-mapping for multi-protocol server

● A good example of the semantic mapping 
problem is the CIFS equivalent of open(), called 
NTCreateX().

● takes 11 parameters and returns 14



CIFS meta-data

● File meta-data in CIFS is more complex than in 
POSIX

● 4 settable times (POSIX has “2 and a half” time fields)
● DOS attributes, ACLs and SIDs
● separate allocation size
● 8.3 names
● file IDs
● alternate data streams

● Unfortunately applications do end up relying on 
all these bits of meta-data

● the perils of a software monoculture



Some bits already done

● Some bits of CIFS semantics have already been 
added to Linux for the 2.4.0 kernel and above

● oplocks
● simple share modes
● directory notify

● These have helped a lot for Samba, but some 
have caused maintainence headaches for the 
kernel

● How to integrate future CIFS features with less headaches?



Case-Insensitivity

● CIFS needs to be able to export a case insensitive 
view of a filesystem. The problem is doing this 
efficiently.

● very contentious issue
● problems with charsets
● NT is not quite UTF-16
● kernel maintainers have proposed a possible solution

● smbd to kernel dcache coherence mechanism
● log(N) lookup important?



Locking

● File byte range locking is rarely used in POSIX
● works badly, so programmers avoid it
● few users of it, so not priority to fix it

● CIFS needs more sophisticated byte range 
locking

● true 64 bit (not 63 bit or 31 bit)
● no brain-dead “close loses locks on other fds” features
● mandatory locking (needs hook in read/write path)
● lock stacking

● Just solve in user space?
● works, but not good for multi-protocol file servers



File access control

● CIFS users expect full NT ACLs
● impossible to correctly map to POSIX ACLs
● needs SIDs for task security context

● Solve via LSM module?
● Samba LSM module
● NT ACLs and other attributes in an EA
● has sufficient hooks for share modes and locking as well?



Sendfile

● Sendfile seems like an obvious fit for Samba, but 
there are potential problems

● header sent first, what to do when sendfile returns short?
● maybe doesn't matter as NT gets it wrong too

● what happens with WinXP SP2 and mandatory packet 
signing?



Async IO

● Samba4 is designed around asynchronous 
operation, whereas Samba3 is very synchronous 
in nature

● How do we do async filesystem requests, like open(), 
rename() etc?

● do we have to use pthreads? What about pthread 
performance overheads

● see thread_perf.c benchmark - doesn't look good
● can we use direct clone() wrappers, bypassing glibc?



EAs and ACLs

● Samba4 will make extensive use of EAs and 
ACLs, for a closer semantic match to CIFS

● use EAs for alternate data streams?
● EAs limited to 64k. What to do about large streams?
● do we really have to read all or nothing? nasty.
● what about performance?

● nobody benchmarks filesystems with ACLs and EAs!
● some filesystems don't journal inode operations involving EAs

● Can we hook all this into LSM sanely? 
● Looks like we can



Alternate Data Streams

● NTFS and CIFS have “file streams”
● arbitrarily named additional streams of data in files
● mostly used for meta-data now, like who wrote it
● WinXP SP2 uses them for “security zone” information

● this makes streams much more urgent

● How should we store them?
● In EAs?
● in dot-files or a dot-directory?
● what about large streams?



Content Indexing

● A core part of longhorn and WinFS
● Maybe can be summarised as “open by content”
● real-time indexing essential
● can be very quickly deployed by Microsoft

● Win2k implementation uses periodic indexing

● We need this in Linux!
● Users could quickly become addicted to it
● must be supported on network drives
● uses a strange pipe format


